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Dynamics of a turbulent layer generated
by velocity jump
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Abstract

We study a growing turbulent layer generated by the
shear between half-spaces of fluid moving with different ve-
locities. The K-` Kolmogorov theory of turbulence is used,
with the closure relation being proportionality of turbulent
spatial scale to layer thickness. We show that the turbulent
layer exhibits complete self-similarity, that is self-similar dy-
namics that are independent of initial conditions. A criterion
of stability of self-similar regimes is deduced in a simple an-
alytical form. The value of a coefficient entering the closure
relation is estimated by matching experimental data.
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1 Introduction

Turbulence between parallel flows of fluid moving with different ve-
locities U1 and U2 presents a classical example of shear turbulence.
We consider the situation where each flow extends over a half-space
and velocity distribution is uniform in each flow. The dynamics are
described by the Kolmogorov phenomenological theory of fully de-
veloped turbulence [6]. Over the decades this theory has provided
the foundation for numerous applications of so-called K-` model of
turbulence. For horizontally statistically uniform turbulent layer
this model writes [9]:

∂tK = α∂z(`
√

K∂zK)− c
K3/2

`
+ `
√

K(∂zu)2, ∂tu = ∂z(`
√

K∂zu),

(1)
where K is the turbulent energy, that is the ensemble-average kinetic
energy of pulsations per unit mass; z is the transverse coordinate;
t is the time; α and c are positive coefficients; u is the average veloc-
ity; and ` is the spatial scale of turbulence. The value ` is implied to
obey either its own transfer equation or some simpler relation which
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closes the problem. The first equation (1) describes the evolution
of the turbulent energy due to the transfer by velocity pulsations
(nonlinear diffusion term), viscous dissipation (negative term) and
production by the shear; the second equation (1) describes the tur-
bulent diffusion of the momentum.

The scale ` characterizes the typical size of turbulent eddies. We
choose to adhere a simple closure approximation [1]: the size equals
some fixed portion of the thickness of the layer, which we denote
by 2h(t). Thus,

`(t) = µh(t) . (2)

The parameter µ will be determined by matching the growth rate
of the turbulent layer to the experimental data.

Theoretically it has long been established that the thickness of
the layer increases linearly in time: h ∼ t . It is commonly assumed
that this law trivially follows from the dimensional consideration
that the thickness depends on the initial velocity jump, 2U , and
time, leading to

h = λUt , (3)

where λ is a non-dimensional coefficient.

However, generally the dynamics also depend on initial condi-
tions such as the initial thickness of the layer, a, and the initial
amount of the turbulent energy, Q, emerging as a result of the ini-
tial instability of the laminar flow (this stage is not covered by the
K-` model). The presented dimensional analysis implicitly suggests
that at large times the role of the parameters a and Q vanishes.
However, whether or not this occurs is not straightforward. The
book of Barenblatt [2] contains many examples where small (di-
mensionless) parameters remain important because solutions have
power law asymptotics; for example

F (ξ, η) ∼ ηλG(ξ/ην) as η → 0 . (4)
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Imagine that η here stands for the dimensionless combination of
variables a/(Ut) → 0 as t → ∞ . If (4) holds the parameter a
cannot be ignored at all times. Such a situation is referred to as
incomplete self-similarity on the parameter η. This is distinguished
from complete self-similarity when

F (ξ, η) ∼ F (ξ, 0) as η → 0 ,

where F (ξ, 0) is non-zero and finite. We will see that the expansion
law (3) might be a part of solution representing either complete or
incomplete self-similarity. In the former case the role of a and Q
would vanish, but in the latter case these parameters always re-
main important. Which type of self-similarity actually takes place
presents special interest.

Kasyanova [5] used the model (1–2) to study a problem of the
shear flow in the upper layer of the ocean. They suggested that the
flow was driven by a constant stress on the surface. This situation
is different from our case which is equivalent to the dynamics of a
half-space of fluid with prescribed constant velocity on the boundary.

Experimental data on the shear turbulence between plane mixing
layers are presented and discussed in [3, 10, 7, 8, 11, 15]. Experi-
mentalists used statistically stationary flows of gas having different
velocities, separated by a barrier. The flows come into contact at
a barrier’s end, and the mixing zone gradually widens downstream.
This process is similar to the mixing of half-spaces of fluid, impul-
sively set into motion at the initial moment with different veloci-
ties. To transform the spatial problem into the temporal problem
the time in (3) was linked [3] to the downstream coordinate x as
t = x/Uc , where Uc is some effective (convective) velocity. With Uc

assumed equal to the average velocity, Uc = (U1+U2)/2 , relation (3)
becomes 2h/x = 2λ(U1−U2)/(U1+U2) . This formula was used in [3]
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to process the measurements, to yield the estimate

λ = 0.1 . (5)

2 Evolution of turbulent layer

We study the system (1–2) with the boundary conditions of uniform
flow and zero turbulence far away from the growing turbulent layer:

K(±∞, t) = 0 , u(±∞, t) = ±U . (6)

The coefficients α and c are assumed to be constants: α = 1 ,
c = 0.062 [9, 4]. Given the conditions (6) and for a wide range of
assumptions about `, the nonlinear turbulent diffusion mechanism
leads to the turbulent energy being confined within a layer of finite
width 2h(t). Beyond the layer the functions K(z, t) and u(z, t) re-
main unperturbed. Thus the eddy size ` appears to be well defined
in (2).

We assume that the velocity profile is anti-symmetric with re-
spect to the middle plane, z = 0, and the turbulent energy profile is
symmetric with respect to this plane. Therefore it suffices to study
only half of the layer, say z > 0, under additional boundary con-
ditions expressing zero energy flux and zero velocity on the middle
plane:

∂zK(z, t)|z=0 = 0 , u(0, t) = 0 . (7)

As for the initial conditions, we adopt arbitrary initial profiles of the
velocity, u(z, 0), and turbulent energy K(z, 0) in an initial layer of
width 2a. Thus there is some initial charge of the turbulent energy:

Q =

∫ a

−a

K(z, 0) dz . (8)
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The turbulent dynamics are determined by the dimensional pa-
rameters

U (cm/s) , a (cm) , Q (cm3/s2) , z (cm) , t (s) .

Two of these are dimensionally independent: let us choose U and t.
The unknowns to be determined are

K (cm2/s2) , u (cm/s) , h (cm) .

Non-dimensionalizing every quantity by the appropriate combina-
tion of U and t we get:

K = U2 R

(
z

Ut
,

a

Ut
,

Q

U3t

)
, (9)

u = U V

(
z

Ut
,

a

Ut
,

Q

U3t

)
, (10)

h = UtH

(
a

Ut
,

Q

U3t

)
, (11)

where R, V and H are dimensionless functions. We will use these
expressions to analyze the numerical results.

In the computations we transform to non-dimensional variables:

h = ah1 , z = az1 , t = (a/U)t1 , u = Uu1 , K = U2K1 .

In non-dimensional form, equations (1) are written as (henceforth
the subscripts are omitted unless specified otherwise),

∂tK = αµh∂z(
√

K∂zK)− c
K3/2

µh
+ µh

√
K(∂zu)2 , (12)

∂tu = µh∂z(
√

K∂zu) , (13)

K(∞, t) = 0 , u(∞, t) = 1 . (14)
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Figure 1: The turbulent layer grows linearly in time: µ = 1 .

The initial conditions have the form

K = K0(z, 0) and u = u0(z, 0) for 0 < z < 1; (15)

K ≡ 0 and u ≡ 1 for z ≥ 1 , (16)

where K0 and u0 are some arbitrary functions.

We solved the problem expressed in equations (12–16) using the
Crank-Nicolson finite difference scheme. Discretized equations were
solved with the help of the imsl Fortran library subroutine. As
in [12], we slightly modified the initial condition by assuming that
outside of the turbulent layer the turbulent energy equals some small
value ε. We checked that the dynamics were not sensitive to the
specific value of ε, provided ε was sufficiently small. Thus, our
solutions effectively correspond to the limit ε → 0 .

Figures 1–3 display the solutions for half of the layer, z > 0.
The picture for the whole layer is obtained by extending the tur-
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Figure 2: The turbulent energy approaches self-similar regime:
µ = 1 ; t = 6, 15, . . . , 150 with interval 15.
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Figure 3: The velocity approaches self-similarity regime: µ = 1 ;
t = 15, . . . , 150 with interval 15.
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bulent energy profile symmetrically and the velocity profile anti-
symmetrically into the region z < 0. The figures demonstrate that
the asymptotic solutions at large times become self-similar. The
thickness of the turbulent layer versus time very quickly approaches
a straight line, h ∼ t . According to (11) this means that the func-
tion H[a/(Ut), Q/(U3t)] tends to a finite limit. However, this alone
does not guarantee that the parameters a/(Ut) and Q/(U3t) can be
replaced by 0, because the following asymptotic form of the func-
tion H is possible

H

(
a

Ut
,

Q

U3t

)
= H

[
a/(Ut)

Q/(U3t)

]
= H

(
aU2

Q

)
.

If valid, this hypothetical form of H contains no time so that H is
finite as t → ∞ . If valid this expression would represent incom-
plete self-similarity with respect to any of the parameters Q/(U3t)
and a/(Ut) (which corresponds to λ = 0 , ν = 1 in the definition
of incomplete similarity (4)). We conducted a number of numerical
experiments to determine whether or not the solution is sensitive
to aU2/Q . No dependence on this combination is found. Thus, the
function H not only has finite non-zero limit as a/(Ut) → 0 and
Q/(U3t) → 0 , but, in addition, this limit is independent of aU2/Q .
Analogously the variables a/(Ut) and Q/(U3t) may be replaced by 0
in (9) and (10).

3 Stability of self-similar regimes

The numerical results demonstrate both existence and stability of
the self-similar regimes. At the same time it is possible to derive a
general criterion of stability in useful analytical form. To simplify
manipulations, the parameter µ is removed from the problem for-
mulations, by transferring to a new set of non-dimensional variables
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(labelled by subscripts):

z = µz2 , h = µh2 , c = µ2c2 . (17)

Using (17), the non-dimensional governing equations and bound-
ary conditions assume the following form, with the subscripts being
omitted:

∂tK = αh∂z(
√

K∂zK)− c
K3/2

h
+ h

√
K(∂zu)2 , (18)

∂tu = h∂z(
√

K∂zu) , (19)

K = 0 and u = ±1 on z = ±h(t) . (20)

Denoting
√

K = β , transform to similarity variables

η = z/t , h = Mt (21)

and make the log-time transformation [14]:

τ = log t . (22)

The log-time transformation proved useful in stability analysis of the
processes involving usual Fickian diffusion [13]. The transformation
convert the diffusion equations to a form where small perturbations
of large physical size decay exponentially in the logarithmic time τ ,
in contrast to algebraic decay when expressed in terms of the usual
time t. That the Wayne transformation should work for the turbu-
lent layer is conjectured by the following analogy with the Fickian
diffusion. For the latter process the layer thickness h would be pro-
portional to

√
t and hence, with a constant diffusion coefficient D,

the mixing time across the layer is h2/D ∼ t . The thickness of
the turbulent layer increases linearly in time, h ∼ t , but the dif-
fusion coefficient h

√
K also increases linearly in time as K is con-

stant. Thus the mixing time across the turbulent layer is similarly
h2/(h

√
K) ∼ t . Hence, the qualitative property of algebraic decay
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of perturbations in the Fickian diffusion should also take place for
the turbulent layer. Using (21–22) we calculate the derivatives

∂z =
1

t
∂η , ∂t =

1

t
(∂τ − η∂η) .

Substituting these into (18–20) we obtain

βτ − ηβη = αM
(
ββηη + 2β2

η

)
− c

2M
β2 +

M

2
(uη)

2 , (23)

uτ − ηuη = M (βuη)η , (24)

β = 0 and u = ±1 for η = ±M . (25)

To linearize the problem, the self-similar solution is perturbed,

β(η, τ) = β(η) + β′(η)eλτ , u(η, τ) = u(η) + u′(η)eλτ , (26)

where the primes denote the small perturbations. Substituting (26)
into (23–24) and neglecting products of perturbation quantities we
deduce

λβ′ = ηβ′η + αM
(
ββ′ηη + βηηβ

′ + 4βηβ
′
η

)
− c

M
ββ′ + Muηu

′
η , (27)

λu′ = ηu′η + M
(
uηβ

′ + βu′η
)

η
. (28)

Now multiply (27) by β′ and (28) by u′, sum up the equations and
integrate over the infinite domain. Integration by parts gives

λ

∞∫
−∞

[
β′

2
+ u′

2
]

dη =
[

1
2
ηu′

2
+ Muηβ

′u′ + Mβu′u′η + 1
2
ηβ′

2

+ αM
(
ββ′β′η + 3

2
βηβ

′2
)]∞

−∞
−

∞∫
−∞

[
1
2
β′

2
+ αMββ′

2
η

+
c

M
β′

2
β + 1

2
u′

2
+ Mβu′

2
η + 1

2
αMβ′

2
βηη

]
dη .
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According to (25), β, βη and uη vanish outside of the turbulent layer,
so the terms involving these quantities at infinity disappear. Thus
we only need to assume that u′ and β′ are o(1/

√
η) for large η for

the other two boundary terms to disappear. The sufficient condition
for λ to be negative is then

1

2
(1 + αMβηη) +

c

M
β ≥ 0 for all η . (29)

This condition ensures that the self-similar solution is asymptoti-
cally stable to small perturbations, and hence is a realised attractor.

Interestingly, there exists a set of the values of c and α leading
to exact analytic solutions. For such a solution we can easily check
whether the criterion (29) holds. Denote the limit of the function H
in (11) as ξ0 and define the self-similar variable as

ξ =
z

Ut
. (30)

Thus, ξ varies in the interval 0 ≤ ξ ≤ ξ0 . Note that the variables η,
M and ξ, ξ0 are connected:

η = ξ/µ , M = ξ0/µ . (31)

As established numerically the functions H, R and V have finite
non-zero limits:

H = ξ0 , R = R(ξ) , V = V (ξ) . (32)

Substituting (9–11) and (30–32) into (1) we obtain ordinary differ-
ential equations for R and V :

ξ
dR

dξ
+ αµξ0

d

dξ

(
R1/2dR

dξ

)
− c

µξ0

R3/2 + µξ0R
1/2

(
dV

dξ

)2

= 0 , (33)

ξ
dV

dξ
+ µξ0

d

dξ

(
R1/2dV

dξ

)
= 0 . (34)
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Figure 4: Experimental (dashed line) and theoretical growth of
the turbulent layer for various µ.

It is easy to verify that for c = 0 and α = 2/5 the analytic solution
of (33–34) is

ξ0 = µ
√

5/2 , R1/2 =

√
5/2

2
− ξ2

√
10µ2

, V =

√
2/5 ξ

µ
. (35)

Now, using (35) and (31) we find:

1

2
(1 + αMβηη) +

c

M
β =

1

2

[
1 + α

ξ0

µ

d2R1/2

d (ξ/µ)2

]
=

3

10
> 0 ;

therefore the regime (35) is stable. Although the exact solution (35)
is not directly useful because the value α = 2/5 is too small, it may
act as a useful reference point for further analysis.

Finally we determined the value of the parameter µ for which
theoretical growth rate matches experiments (Figure 4). Accord-
ing to (5), the experimental line in Figure 4 is drawn with the
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slope λ = 0.1 . The step-like form of the theoretical curves here is
due to discretization: the turbulent front moves by jumps over grid
elements. This is just an approximation of real continuous propaga-
tion of the front. See that the best match is achieved for µ = 0.06 .

4 Conclusions

A version of the K-` model of fully developed turbulence is used
to analyze the expansion of a turbulent layer between parallel fluid
flows initially moving with different constant velocities. It is numer-
ically demonstrated that large-time asymptotic solutions are inde-
pendent of initial conditions and thus are examples of complete self-
similarity. In the limit t →∞ turbulence tends to occupy an entire
space, with an intensity of velocity pulsations approaching a finite
limit at every point of space. A criterion of stability of self-similar
regimes is deduced in analytical form. The value of a coefficient
entering the closure relation of the K-` model is estimated using
available experimental data.
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