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An investigation of spatial and temporal
weighting schemes for use in

unstructured mesh control volume finite
element methods
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Abstract

In this work the control volume finite element (cvfe)
method is used to discretise a two-dimensional non-linear
transport model on an unstructured mesh. First and second
order temporal weighting, combined with various flux limit-
ing techniques (spatial weighting) are analysed in order to
identify the most accurate and efficient numerical scheme.
An inexact Newton method is used to resolve the underly-
ing discrete non-linear system. In computing the Newton
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step the performance of the preconditioned iterative solvers
bicgstab and gmres, in conjunction with a two-node Ja-
cobian approximation is also examined. A linear benchmark
problem that admits an analytical solution is used to assess
the accuracy and computational efficiency of the numerical
model. The results show that the flux limited second order
temporal scheme substantially reduce numerical diffusion on
relatively coarse meshes. The low temperature wood drying
non-linear case study highlights that the first order temporal
scheme combined with flux limiting achieves good accuracy
on a relatively coarse mesh and improves the overall compu-
tational efficiency.
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1 Introduction

The motivation for this work arises from the need to develop an
efficient and accurate computational model for wood drying. Two-
dimensional models that account for the heterogeneous nature of
the wood, such as growth rings, must be developed for the purposes
of furthering the fundamental understanding of the drying process.
Due to the inherent complexity of the model, unstructured trian-
gular meshes are used to describe the computational domain. Ad-
ditionally the governing equations for the drying process are highly
non-linear and hence require the efficient implementation of a non-
linear solver. In the past, the control volume finite element (cvfe)
method [3, 7] has been used to discretise the non-linear partial dif-
ferential system that describes the drying process. This method will
be analysed in detail here in order to assess its accuracy and effi-
ciency. The optimal combination of spatial and temporal weighting
schemes to ensure accurate results on relatively coarse unstructured
meshes will also be identified. The first of two important ingredients
in this computational model is flux limiting, which is a scheme that
sharpens the steep drying fronts observed in the saturation profiles.
The second is an inexact Newton method, which resolves the non-
linear system at each time level in order to advance the solution of
the transport equation in time. Flux limiting on structured grids
has been utilised with great success in the past for drying [11] and
for reducing numerical diffusion of the contaminant mole fraction
fronts in multi-phase compositional computational models [4, 12].
It is well known that a great deal of care must be taken with the
treatment of the advection and diffusive terms that exist within
complicated conservation equations in order to ensure monotonic
solutions. The use of classical upstream weighting for these terms
may induce excessive numerical diffusion. Here, the previously de-
veloped schemes for structured meshes will be tested and analysed
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for unstructured grids. Furthermore, a complete description of the
implementation of the inexact Newton method including a discus-
sion on the approximation of the Jacobian matrix, together with an
investigation of the solution of the linearised system using precon-
ditioned bicgstab [13] and gmres [10], is also deliberated.

2 Transport model

The objective of this research is to formulate a generalised compu-
tational solution methodology for the following non-linear transport
equation that describes the evolution of liquid conservation (mois-
ture content) during low temperature wood drying for use in on-line
kiln control,

∂

∂t
(ρ0X + εgρv)+∇· (ρwvw + ρvvg) = ∇· (Ddif∇Xb + ρgDeff∇ωv) .

(1)
Although in the past three coupled non-linear transport equations
have been used to model the drying of wood [7, 11], under the as-
sumptions of constant temperature and constant pressure this one
equation model is valid for drying temperatures not exceeding 60◦C.
A typical experimental kiln operating schedule that controls both
the dry and wet bulb temperatures is used to determine the dry-
ing characteristics of the hot convected air that is used to dry the
wood sample.

The primary variable in Equation (1) is the moisture content X,
which comprises both free and bound water. The remaining sym-
bols are secondary variables and constants, where εg is the volume
fraction of gas, ωv the vapour mass fraction, ρ0 the specific wood
density and ρ represents density. The subscripts w, g and v rep-
resent liquid, gas and vapour, respectively. The bound moisture
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content is represented by Xb . The tensors Ddif and Deff represent
the bound water diffusivity and gaseous diffusion, respectively. The
gas and liquid phase velocities are given by the Generalised Darcy’s
Law

vl = −Klλl∇ϕl , ∇ϕl = ∇Pl − ρlg∇χ , l = w, g ,

where ϕ is the phase potential, P the pressure, g the gravitational
acceleration and χ the depth scalar. The tensors K and λ repre-
sent the absolute permeability and the mobility, respectively. The
physical parameters needed for the model have been determined
experimentally [8, 9]. The boundary fluxes take the form

Jw · n̂b = kmcMv ln

(
1− x∞
1− xv

)
,

where n̂b is the outward unit normal vector, km the mass transfer
coefficient, c the molar concentration, Mv the molecular weight of
vapour, xv and x∞ are the molar fractions at the surface of the wood
and in the air, respectively. The boundary flux on symmetry planes
is assumed to be zero.

The initial moisture content field has to be determined prior to
the commencement of the drying process. Firstly, the free water sat-
uration Sfwi

at each of the N nodes in the mesh and the equilibrium
capillary pressure Pceqm , are calculated by solving the non-linear
system of N + 1 equations F0 (x) = 0 . The coordinate functions
of F0 are

fi (x) = Pc (Sfwi
, ρ0i

, T )− Pceqm ,

fN+1 (x) = ρw

∑n
i=1 φiSfwi

Ai∑n
i=1Aiρ0i

+Xfsp − X̄ ,

where x =
(
Sfw1 , . . . , SfwN

, Pceqm

)T
, Pc is the capillary pressure func-

tion, T the initial temperature, X̄ the initial average moisture con-
tent, Xfsp the fibre saturation point, φ the porosity and A the area of
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Figure 1: Initial moisture content field and triangular element
mesh.

the control volume. The initial moisture content field, see Figure 1,
is then calculated using

Xi =
ρwφiSfwi

ρ0i

+Xfsp .
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3 Computational model

3.1 Control volume finite element method

To solve the transport model numerically the cvfe method is used
to discretise the transport equation (1), rewritten as

∂ψ

∂t
+∇ · J = 0 , (2)

ψ = ρ0X + εgρv ,

J = ρwvw + ρvvg −Ddif∇Xb − ρgDeff∇ωv ,

where J denotes the flux vector. The domain of the problem is
meshed with finite triangular elements, as shown in Figure 1. The
control volumes are constructed around the node points, which are
the vertices of the elements and also the locations where the values
of the discrete variables are associated. The cvfe method is cho-
sen because it applies easily to unstructured meshes, ensures that
the moisture balance remains conserved at the discrete level and is
flexible in that it allows for a number of different possibilities for
approximating the flux though the control volume (cv) face.

Equation (2) is integrated in both time and space to arrive at
this discrete analogue of the transport equation:

δVi

δt

(
ψn+1

i − ψn
i

)
+ α

∑
j

(J · n)n+1
j + (1− α)

∑
j

(J · n)n
j = 0 . (3)

The superscript n+1 denotes the next time level and n the current
time level, the subscript i represents the ith node, δVi is the volume
of the ith cv, δt the time step, while j sums over the cv faces where
n is the outward normal which takes into account the cv face area.
The parameter α allows for a fully explicit system with α = 0 ,
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a fully implicit system with α = 1 , and a second order implicit
system (Crank-Nicolson) with α = 0.5 . The fully explicit scheme is
not considered here due to the restrictive constraint imposed on the
time step and mesh size. The fully implicit system is only first order
in time but is stable. Although the Crank-Nicolson system is second
order in time, it may become non-monotonic for particular time step
and spatial step combinations, causing non-physical results.

3.2 Non-linear solver

Applying the discretisation formula (3) to each of the N nodes in
the mesh results in a system of N non-linear discrete equations,
each denoted by Fi. This system

F (u) = (F1 (u) , F2 (u) , . . . , FN (u))T = 0 ,

u = (X1, X2, . . . , XN)T ,

must be solved simultaneously for each time step in order to advance
the solution in time. In this work an inexact Newton method [2] is
used:

u(k+1) = u(k) + δu(k) , Jm

(
u(k)

)
δu(k) = −F

(
u(k)

)
,

where Jm is an approximation of the Jacobian matrix and δu(k) the
Newton correction. The iterations are continued until the conver-
gence criterion

‖F
(
u(k+1)

)
‖ < εtol ≈ 10−7 ,

is reached. The Jacobian matrix must be generated and then the
corresponding linear system solved for each iteration of the Newton
method. The function Fi depends upon only a small subset of the
entire solution vector, which is influenced by the method used to
calculate the flux. Hence, the Jacobian matrix is sparse and in
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this work is solved using either bicgstab or gmres, with various
preconditioners.

The construction of the Jacobian matrix requires the derivatives
of the accumulation term and all flux terms. To calculate these
derivatives a first order numerical approximation is used:

∂Fi

∂Xj

=
Fi (u + ε‖u‖ej)− Fi (u)

ε‖u‖
,

where ε ≈ 10−7 , ‖u‖ is used for scaling purposes and ej is the
jth unit vector. Therefore to build the Jacobian matrix, the flux
terms together with the shifted flux terms must be evaluated at
each cv face, which is computationally expensive. However, this
expense is reduced by assuming that the flux is split into implicit
and explicit components at a given Newton iteration. Implicit com-
ponents remain in the Jacobian matrix whilst explicit components
appear only in the function vector. Firstly the fill-in caused by the
flux limiter (Section 3.3) is ignored, which has been shown to be an
acceptable approximation [12]. Secondly, only the two nodes that
constitute the element face that intersects the cv face on which the
flux is being evaluated, are treated implicitly, referred to as the two-
node Jacobian approximation. Both of these approximations reduce
the number of flux derivatives to be calculated, hence reducing the
time required to generate the Jacobian.

3.3 Flux limiting

The flux function has both advection and diffusive terms. The way
in which these terms are approximated at the cv face is crucial to
the overall accuracy and monotonicity of the solution. The diffusive
terms require that both the values and the gradients of particular
secondary variables are computed at the cv faces. Finite element
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shape functions [3] are used for these calculations. For example, the
formulas for Ddif and ∇Xb are

Ddif =
M∑

k=1

NkDk
dif , ∇Xb =

M∑
k=1

∇NkXk
b ,

where the Nk are the shape functions of a finite element with M ver-
tices.

The advection terms must be treated in such a way that en-
sures the correct physical behaviour of the solution. The values of
particular secondary variables must be calculated at the cv faces.
First order spatial upwinding uses the flow direction to find the up-
stream node and then uses this node as the cv face representative
point. Whereas this method is stable it does however introduce a
large amount of numerical diffusion [5, 6]. A more general method
is flux limiting, which has been found to produce superior results
to upwind schemes by sharpening saturation fronts [11, 12]. The
method requires both the upwind and downwind nodes, as well as
the second upwind node, which is found by using the maximum flow
method that seeks to track the location of the streamline from the
upwind node. For example, using this technique to estimate the cv
face value of the liquid mobility λw would be

λw = λup
w +

σ (r)

2
(λdn

w − λup
w ) ,

where σ is the limiter function and r is known as the sensor. There
are various methods for computing the sensor, here four different
sensors are investigated. The first uses the ratio of the difference in
the pressure Pw ,

r =

(
P 2up

w − P up
w

‖x2up − xup‖

)
/

(
P up

w − P dn
w

‖xup − xdn‖

)
,
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where x denotes the positional vector. Replacing the pressure with
the phase potential ϕw gives the second method. An alternative
approach is to use the ratio of the inner product of the gradient
of the phase potential ∇ϕw at the cv face and the cv face unit
normal n̂ ,

r =
(∇ϕw · n̂)2up

(∇ϕw · n̂)up .

Replacing the gradient of the phase potential with the phase ve-
locity vw gives the fourth method. The four sensors all have the
domain [0,∞) . The range of the limiter function σ must be con-
tained in [0, 2] , where 0 equates to upwinding, 1 averaging and
2 downwinding. The first of two limiter functions investigated is
the van Leer limiter [14] defined by σ (r) = 2r/ (1 + r) , which has
a range [0, 2) . The second is the parabolic limiter [1] defined by

σ (r) =

{
r (2− r) , r < 1

1 , r ≥ 1
,

which has a range [0, 1] , to avoid any downwinding.

4 Results and discussion

4.1 Linear benchmark case study

Before using the computational model described in Section 3 to solve
the non-linear transport equation, a linear benchmark problem that
admits an analytical solution is used to analyse the accuracy and
efficiency of the different numerical schemes. Defining the flux in
Equation (2) by J = ψv − D∇ψ , where D = diag (αx, αy) and

v = (u, v)T , on the domain [0, X] × [0, Y ] , 0 ≤ t ≤ T , with the
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initial condition of a two-dimensional Gauss pulse of unit height and
centred at the location (xc, yc) , leads to the exact solution

ψe =
1

4t+ 1
exp

{
−(x− ut+ xc)

2

αx (4t+ 1)
− (y − vt+ yc)

2

αy (4t+ 1)

}
. (4)

The four boundary conditions are obtained by substituting x = 0 ,
x = X , y = 0 and y = Y , into Equation (4) respectively. For X =
Y = 2 , T = 1.25 , αx = αy = 0.01 , u = v = 0.8 and xc = yc = 0.5 ,
the exact solution is a pulse with height 0.166667 and centred at
(1.5, 1.5), see Figure 2(a).

Note: the complete non-linear solver is employed for this bench-
mark problem in order to test the construction of the Jacobian
matrix, the unstructured discretisation methodology and the flux
limiter formulation. The accuracy of the computed solution is mon-
itored using two error parameters, the pulse height which observes
the amount of numerical diffusion, and the root mean square relative
error

rmsre =

√∑N
i=1 (ψe

i − ψi)
2∑N

i=1 (ψe
i )

2
,

which measures the quality of the solution in comparison to the
exact solution. The efficiency of the numerical scheme is gauged
by observing the cpu time required for the non-linear solver. The
numerical solution is computed on two triangular element meshes,
a coarse mesh with 3308 nodes and a fine mesh with 49733 nodes.

Table 1 contains the results for the analysis of the spatial and
temporal weighting schemes. The first order temporal scheme com-
bined with upwinding is very stable, in that it does not produce
non-physical results even for relatively large time step sizes. How-
ever, the error is large and a considerable smearing of the Gaussian
pulse is observed, see Figure 2(b). For this method the time step
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Table 1: Benchmark problem, spatial and temporal weighting
schemes.

Error ×10−4 First order Second order Second order
Pulse height temporal with temporal with temporal with
cpu time (sec) upwinding upwinding flux limiting
Coarse mesh 0.496365 0.433244 0.169803
(3308 nodes) 0.069628 0.082175 0.136391

21.9 4.5 26.6
Fine mesh 0.305122 0.173284 0.057558
(48733 nodes) 0.107092 0.133346 0.161249

410.3 148.0 685.4

size was fixed at 0.0125 seconds, since further reduction in the time
step gave little improvement in the quality of the numerical solu-
tion. When applying the second order temporal weighting scheme
the time step size could be increased whilst still maintaining good
accuracy. Thus, although the improvement in the error and nu-
merical diffusion was only moderate, the cpu time is significantly
reduced. The introduction of flux limiting increases the spatial or-
der of accuracy. When comparing the results for the same mesh size,
flux limiting greatly reduces both the error and numerical diffusion,
see Figure 2(c), but at a cost of increasing the cpu time. However,
when comparing flux limiting on the coarse mesh with upwinding
on the fine mesh, see Figure 2(d), the quality of the numerical so-
lutions are similar. Hence we conclude that flux limiting produces
comparable results with less computational overhead.

For the flux limited second order temporal scheme, the two-
node Jacobian approximation reduced the cpu time by 17.7% for
the coarse mesh and 9.3% for the fine mesh. The difference in the
computed solutions was insignificant for the coarse mesh and only
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Figure 2: Benchmark problem, spatial and temporal weighting
schemes: (a) exact solution, (b) first order temporal with upwind-
ing, (c) second order temporal with flux limiting, (d) second order
temporal with upwinding on the fine mesh.
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Table 2: Transport model, spatial and temporal weighting
schemes.

cpu time (sec): First order Second order
upwinding temporal temporal
flux limiting
Coarse mesh 40.7 72.1
(603 nodes) 31.7 70.1
Fine mesh 107.1 413.5
(1846 nodes) 108.8 507.9

marginal for the fine mesh. The approximation caused an increase
in the number of Newton iterations for the fine mesh, this explains
why the reduction in cpu time was not as great.

4.2 Transport model

The solution of the non-linear transport model described in Sec-
tion 2 was computed with the numerical model described in Sec-
tion 3. Two triangular element meshes were used, a coarse mesh
with 603 nodes and a fine mesh with 1846 nodes. The solution
was computed on the domain [0, 0.02] × [0, 0.01] and up to a time
of 54000.0 seconds (15 hours), at which time the wood sample is
considered to be dry.

Table 2 contains the results for the analysis of the spatial and
temporal weighting schemes. The second order temporal scheme
requires substantially more cpu time than the first order scheme,
however the difference in the computed solutions is minimal. Hence,
the first order temporal method is the preferred option. When com-
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Table 3: Transport model, flux limiter functions and sensors.

cpu time (sec) ∆P ∆ϕ ∇ϕ · n̂ v · n̂
(∞ ≡ non-physical)
van Leer 31.7 33.5 ∞ 64.8
Parabolic 31.4 31.6 30.8 38.2

paring upwinding and flux limiting on the fine mesh there is little
difference in the solutions, see Figures 3(a) and 3(b), hence the ef-
fectiveness of flux limiting on the coarse mesh will be gauged by
comparing its solution to that of the solutions computed on the fine
mesh. On the coarse mesh the solution of the upwinding scheme
is different to that of the flux limiting scheme, see Figures 3(c)
and 3(d), with the flux limited solution resembling that of the so-
lutions computed on the fine mesh. Thus flux limiting produces a
similar result on the coarse mesh to that of upwinding on the fine
mesh, and at a third of the computational time.

Regarding the linear solvers, both bicgstab and gmres pro-
duced identical solutions in virtually equal cpu times, when ei-
ther ilu(0) or ssor preconditioning was implemented. For both
bicgstab and gmres the ilu(0) preconditioner slightly outper-
formed the ssor preconditioner. For the flux limited first order
temporal scheme on the coarse mesh, the two-node Jacobian ap-
proximation reduced the cpu time spent on calculating the shifted
fluxes by 34.6%. This is expected since the shifted flux is now only
calculated at two of the three cv faces per element. This saving re-
sulted in a 17.7% reduction of the total cpu time, now 26.1 seconds
as opposed to 31.7 seconds. The two-node Jacobian approximation
did not impact the convergence of the Newton solver for the coarse
mesh. However, for the fine mesh this approximation did increase
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Figure 3: Transport model, spatial weighting schemes: (a) up-
winding and (b) flux limiting on the fine mesh; (next page) (c) up-
winding and (d) flux limiting on the coarse mesh.
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Figure 3: (continued) (c) upwinding and (d) flux limiting on the
coarse mesh.
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the number of Newton iterations, resulting in only a 29.2% reduc-
tion of cpu time spent on calculating the shifted fluxes, and in
turn reducing the total cpu time to 95.2 seconds. Table 3 contains
the results for the analysis of the various flux limiter functions and
sensors. For the ∆P sensor, the two limiter functions produced
solutions of equal quality and in similar cpu time. However, the
parabolic limiter is the most reliable, in that the solution accuracy
and efficiency does not vary depending on the choice of the sensor.

5 Conclusions

A complete cvfe solution methodology suitable for resolving non-
linear transport equations on triangular meshes has been presented.
When analysed for the linear benchmark problem, the methodology
highlights the accuracy and computational efficiency offered by the
second order temporal scheme coupled with flux limiting. Further,
flux limiting clearly reduces numerical diffusion and offers similar
accuracies to that of results obtained when using upwinding on fine
meshes. For the non-linear transport model, second order tempo-
ral weighting offered no significant change in the solution quality,
however it did substantially increase the cpu time. The combina-
tion of first order temporal weighting and flux limiting enabled the
accuracy of the coarse mesh solution to be greatly improved. The
preconditioned linear solvers bicgstab and gmres both performed
equally, with ilu(0) preconditioning being the optimal choice. Us-
ing the two-node Jacobian approximation reduced the time required
for the construction of the linearised system. In summary, the cvfe
method that employs flux limiting with the maximum flow potential
method is highly recommended for unstructured meshes.



References C778

References

[1] P. Arminjon, A. Dervieux, Construction of TVD-like artificial
viscosities on two-dimensional arbitrary FEM grids, J. Comp.
Phys. 106 (1993) 176–198. C769

[2] R. L. Burden, J. D. Faires, Numerical analysis (sixth edition),
Brooks/Cole Publishing Company, 1997. C766

[3] W. J. Ferguson, I. W. Turner, A control volume finite element
numerical simulation of the drying of spruce, J. Comp. Phys.
125 (1996) 59–70. C761, C768

[4] P. A. Forsyth, Three-dimensional modelling of steam flush for
DNAPL site remediation, Int. J. Num. Methods in Fluids, 19
(1994) 1055–1081. C761

[5] K. W. Morton, Numerical solution of convection-diffusion
problems, Applied mathematics and mathematical computation
12, Chapman & Hall, 1996. C768

[6] S. V. Patankar, Numerical heat transfer and fluid flow,
Hemisphere Publishing Corporation, McGraw Hill, 1980.
C768
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