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Verification of Markov hypothesis for
conserved scalar process: validation of

conditional moment closure for turbulent
combustion
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Abstract

The Conditional Moment Closure (cmc) is a model for
turbulent combustion that describes the physics of the pro-
cess across the flow for a wide range of situations. The the-
oretical basis used in closing the model is that conserved
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scalars develop in turbulent fields similarly to Markov pro-
cesses. We describe the formulation of cmc in both its deter-
ministic and stochastic forms and show some preliminary re-
sults justifying the assumption of similarity with the Markov
hypothesis.
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1 Introduction

The Conditional Moment Closure (cmc) is a model for describing
the transport of reactive scalars in conserved scalar spaces for tur-
bulent combustion processes. It was proposed by Klimenko [6], who
derived it from the joint pdf equation, then independently by Bil-
ger [1] via decomposition of the reactive scalar into its conditional
average and conditional fluctuations (see also [7]). Although un-
conditional averages are used in modelling the fluid mechanics, this
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is not possible for modelling chemical reactions because properties
are highly non-linear. When the first conditional moment closure
is considered, it is possible to close the source term; however, this
procedure introduces additional terms which must be closed using
other means.

Cmc has been tested against an array of experimental and nu-
merical results (see [7] for an extensive list), with Kim, Huh and
Tao [5] implementing the full cmc. However, while these tests ex-
hibit support for the validity of the model, they do not directly
examine the hypothesis that was made to complete the deriva-
tion [6, 7]: similarity of a conserved scalar process with a Markov
process. In this paper we present some preliminary findings which
indicate that this is the case hence the only assumption made in the
derivation of cmc is shown to be valid.

2 Theory

The deterministic formulation of cmc is a transport equation for
the conditional expectation Q = 〈Y |ξ = Z〉 :

∂Q

∂t
+ 〈v|Z〉 · ∇Q− 〈N |Z〉∂

2Q

∂Z2
= 〈W |Z〉 . (1)

Here Y is a reactive scalar (for combustion purposes mass fraction)
conditioned on the random variable ξ being a particular conserved
scalar value: the sample space variable Z (the mass fraction of
fuel). Also, v is the physical velocity, N the scalar dissipation rate
[N = D(∇Z)2 , D being the diffusivity], W the chemical source
term and, for ease of notation, 〈•|Z〉 ≡ 〈•|ξ = Z〉 . Coupled with
the cmc equation is the pdf equation:

∂P

∂t
+∇ · 〈v|Z〉P +

∂2〈N |Z〉P
∂Z2

= 0 , (2)
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where P is the Eulerian scalar pdf. When solving the system Equa-
tions (1)–(2), either the pdf must be assigned a presumed shape or
the conditional scalar dissipation rate modelled separately. We de-
fine the Lagrangian pdf as:

F ≡ PQ/n , (3)

where n = const so that
∫

Z
F dZ = 1 , and combine Equations (1)

and (2) to take the form of the Fokker-Planck (direct Kolmogorov)
equation

∂F

∂t
+∇ · 〈v|Z〉F +

∂AF

∂Z
− ∂2BF

∂Z2
=

P 〈W |Z〉
n

. (4)

The drift and diffusion coefficients are, respectively,

A(Z, t) ≡ 2

P (Z, t)

∂〈N |Z〉P (Z, t)

∂Z
and B(Z, t) ≡ 〈N |Z〉 . (5)

Equation (4) is equivalent to the Ito stochastic equation

dZ∗ = A(Z∗, t)dt + [2B(Z∗, t)]1/2 dw , (6)

where the superscript ∗ represents a model for the process and dw a
Wiener process. We call Equation (6) “the stochastic formulation of
cmc” and may use it as a model for cmc instead of Equations (1)
or (4). For further details, refer to [8].

For the purposes of this paper, we consider Y to be the con-
centration of massless particles carried with the flow. The physical
velocities of these particles, vi, is taken to be identical to that of
the flow at the particles’ locations: vi = v(xi(t), t) . The subscript i
denotes an individual particle, i = 1, . . . , n [n being the total num-
ber of particles, used in Equation (3)]. The value of the conserved
scalar of a particle is similarly defined; we define the rate of change
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of passive scalar as the scalar velocity, ui(t) ≡ dZi/dt . The source
term is zero.

To test the hypothesis of similarity with a Markov process, we
consider the autocorrelation functions for the scalar velocity

ρu(t1, t2) ≡
〈u′′i (t1)u′′i (t2)〉
〈[u′′i (t1)]2〉

, (7)

and physical velocity

ρv(t1, t2) ≡
〈v′i(t1) · v′i(t2)〉
〈v′i(t1) · v′i(t1)〉

. (8)

Here t1 < t2, the prime superscript denotes fluctuations about the
unconditional mean (v′i = vi − 〈v〉) and double prime superscript
fluctuations about the conditional mean (u′′i = ui − 〈u|Z〉). To ob-
tain average values for ρv across all three components, the dot prod-
uct was applied, rather than considering just one component. We
note that the correlation of the process described by Equation (6)
is proportional to the Dirac delta function, ρu∗(t1, t2) ∝ δ(t2 − t1) .
We do not expect Zi(t) to be mathematically identical to Z∗

i (t), but
we do expect it to be closer to a Markov process than the equiva-
lent physical process, xi(t). So the characteristic time taken for ρu

to become zero is considered to be significantly shorter than the
equivalent ρv. If true, the diffusion equation [Equation (4)] is a
much better model than conventional modelling which is based on
turbulent diffusion in physical space.

To justify this stance, we consider estimations based on the the-
ory of the inertial interval [6]. When the observation time is of the
order of the inertial interval, u can be considered to be stationary
since the particle remains in an area of fluid which is locally homoge-
neous. The two parameters of the inertial interval are the respective
dissipation rates in physical and scalar space and the dispersion of
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particles is dependent only on these parameters:〈
(∆Zi)

2
〉

= 〈N |Z0〉∆t . (9)

Here ∆Zi ≡ Zi − Z0 and ∆t ≡ t − t0 and the correlation function
for this process is

ρu(∆t) =
1

2

d2 〈(∆Zi)
2〉

d(∆t)2
= 0 . (10)

So we expect that the correlation of ui(t) should be small if ∆t is
of the order of the inertial interval; this is not the case for vi(t).

3 Results

A pseudo-spectral Direct Numerical Simulation (dns) code was used
to generate homogeneous isotropic incompressible decaying turbu-
lence. Simulations were performed on a periodic cubic grid with each
side possessing a length of 2π and 64 nodes. A total of 8192 parti-
cles were injected into the field at locations with zero scalar (within
computational accuracy) with a third-order accurate local cubic in-
terpolation scheme [4] used to obtain the particles’ physical veloc-
ities and scalar. The fourth-order Adams-Bashforth method was
used to move the particles in physical space.

Tables 1 and 2 have details of the properties of the velocity
and scalar fields respectively at initialisation of the particles. For
the compensated energy spectrum of a high Reynolds number flow,
the inertial range should be roughly constant (the Kolmogorov con-
stant); Figure 1, which is the initial spectrum of the simulations for
run R35 demonstrates that the field which was used to generate our
results possesses this trend. This is a somewhat surprising result
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Table 1: Properties (based on the energy spectrum) in si units
of velocity fields at time of injection of particles. Reλ, tη, η, λ,
L, (u2)1/2, κ and Φ(κ) = ε−2/3κ5/3E(κ) are the Taylor Reynolds
number, Kolmogorov timescale, Kolmogorov, Taylor and integral
length scales, rms velocity, wavenumber and compensated energy
spectrum (E is the turbulent kinetic energy, ε the turbulent kinetic
energy dissipation rate) respectively.

Run Reλ0 tη0 η0 λ0 L0 (u2)1/2
0 κmaxη Φmax

R20 20.0 0.0386 0.0684 0.602 1.13 4.03 2.01 1.85
R25 25.0 0.0241 0.0541 0.532 1.04 5.70 1.59 1.96
R30 30.0 0.0165 0.0448 0.483 1.01 7.55 1.32 1.92
R35 35.1 0.0138 0.0410 0.478 1.00 8.92 1.21 2.08

Table 2: Initial properties of scalar fields. σ is the Eulerian scalar
dispersion, N the scalar dissipation rate.

R20 R25 R30 R35
σ0 (10−4) 2.76 6.91 15.4 24.7

N0 (10−4 s−1) 6.44 20.2 63.4 117
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Figure 1: Compensated Velocity Spectrum (Reλ = 35)

owing to the relatively low Reynolds number of this field. The Kol-
mogorov 1941 theory states that the inertial interval exists in the
range 1/L � κ � 1/η ; these limits for our fields were different by
only one order of magnitude. The value of the Kolmogorov constant
is acceptable [11]—by inspection, it is just below 2. Frisch [2] com-
ments in Section 6.3.2 that nonlinear interactions occur in scales
below the Kolmogorov length scale and we note that our fields re-
solve this region (κmaxη in Table 1); Yeung and Zhou [12] report
κmaxη ≈ 1.5 for a range of Reynolds numbers. We note that our
velocity spectrum suffers from the same effect of aliasing as those
reported [12]—the rise in the tail at high wavenumbers—although
our spectrum mysteriously drops at the highest resolved wavenum-
ber. Figure 2 is constructed similarly to Figure 8.8 [9]—we note
that the two match quite well.
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Figure 2: Normalised Energy and Dissipation Spectra (Reλ = 35)
(cf. Figure 8.8 [9])

Figure 3 contains our results for the decay of the autocorrela-
tions of the scalar and physical velocities. We see that the scalar
velocity decays significantly quicker than the physical velocity, as de-
sired. We note that there are some moderate-frequency oscillations
in the scalar velocity autocorrelations, which are most pronounced
for the highest Reynolds number [Figure 3(d)] and seem to have
disappeared by the lowest Reynolds number tested [Figure 3(a)].
These frequencies fall roughly in the range 1/tη < f < 2/tη , which
indicates that they are caused by aliasing (recall κmaxη in Table 1
was in the range 1.2–2). It has been reported [3] that at a Prandtl
number of unity (the value used for our simulations), the scalar field
requires a higher resolution despite the viscosity and diffusivity be-
ing identical. Kerr also reported that aliasing effects were significant
for scalar fields with Pr = 0.7 at a resolution where the velocity field
was not aliased. For our purposes of comparing trends, however, we
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Figure 3: Time history of velocity autocorrelations. The time
axis is normalised by the Kolmogorov timescale. Scalar velocity, —;
physical velocity, – –; exponential approximations [Equation (16)],
· · · . (a) R20; (b) R25; (c) R30; (d) R35.
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see that since the amplitude of these oscillations was relatively low,
the overall decay profile was not significantly affected.

4 Analysis

Since the Eulerian scalar pdf is Gaussian, the scalar dissipation rate
becomes a function only of time [〈N |Z〉 ≡ 〈N(t)〉] and the following
simplifications to Equation (5) are possible:

A(Z, t) ≡ −α(t)(Z − 〈Z〉) and B(t) ≡ 〈N(t)〉 (11)

where
α(t) ≡ 2〈N(t)〉/σ(t) (12)

and σ(t) is the Eulerian scalar dispersion. In evaluating Equa-
tion (7), we used the substitution 〈u|Z〉 = A(Z, t) , with A defined
by Equation (11). It follows from the pdf equation (2) for homoge-
neous incompressible turbulence and Gaussian pdf that there is an
analytical relationship between the Eulerian dispersion and scalar
dissipation rate:

〈N〉 = −0.5 dσ/dt . (13)

The integral form of this equation was found to have an initial rel-
ative error of less than 0.1% which decayed to a small constant
absolute error at large times.

We present in Figure 4 our results of the time history of the Eu-
lerian and Lagrangian scalar dispersions. Also included in this plot
is the theoretical Lagrangian dispersion, σLg, which can be evalu-
ated by considering Equation (4) and substituting Equation (11)
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Figure 4: Time history of scalar dispersions normalised by the
initial Eulerian scalar dispersion. The time axis is normalised by the
Kolmogorov timescale. Lagrangian, —; Eulerian, – ·; Theoretical
Lagrangian [Equation (14)], · · · . (a) R20; (b) R25; (c) R30; (d) R35.
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with the following changes of variable:

γ(t) = −
∫ t

t0

α(t) dt ,

y = Z exp(γ) ,

f = F exp(γ) ,

T =

∫ t

t0

B(t) exp(2γ) dt .

We find that f is a Gaussian with dispersion 2T , hence the disper-
sion of the Lagrangian pdf, F , is:

σLg(t) = g(t)

∫ t

t0

2〈N〉
g(t)

dt (14)

where

g(t) = exp

(
−

∫ t

t0

4〈N〉
σ

dt

)
.

Although we see that the computational Lagrangian dispersion never
matches the theoretical value until all three converge, this is under-
standable because the rate of change of Lagrangian dispersion at
initialisation is negligible, while the theoretical Lagrangian disper-
sion’s rate is 2〈N(0)〉.

To compare the autocorrelations for a variety of initial Reynolds
numbers, the Lagrangian integral time scales for the autocorrela-
tions [Equations (7) and (8)],

T =

∫ ∞

0

|ρ(∆t)| d(∆t) , (15)

were evaluated (the absolute values of the autocorrelations were
taken to account for any oscillations about zero). For a stationary
Gaussian Markov process [Equation (6)], the autocorrelation is

ρ′(∆t) = exp(−|∆t|/T ) , (16)



5 Conclusions C815

Table 3: Lagrangian integral timescales for scalar and physical
velocities

R20 R25 R30 R35
Tu 0.0867 0.0506 0.0226 0.0165
Tv 0.224 0.148 0.105 0.0880

which is shown on Figure 3. Although these trends are reasonable
approximations, we do not expect them to be exact since we consider
here processes which are not necessarily Markovian; we also consider
decaying turbulence, which is not stationary.

We present in Table 3 and Figure 5 the data for the various cor-
relation times. See that the correlation time for the scalar process is
significantly shorter than the physical process, with the scalar pro-
cess being comparable to the Kolmogorov scale (as suggested [6]),
whereas the physical process is comparable to the integral scale. The
scalar velocity correlation times for Reynolds numbers 30 and 35 are
probably underestimated owing to the aliasing in scalar data. We
also see that Figure 5 compares favourably with results obtained by
Wandel, Weinman and Klimenko [10] for a different set of velocity
fields, where the Lagrangian physical velocity correlations could not
be obtained.

5 Conclusions

The theoretical basis of the closure hypothesis of the Conditional
Moment Closure (cmc) was that processes in scalar space display
similarity with a Markov process. Although aliasing was observed
in the scalar results, the amplitude of the aliased frequencies was
relatively small. As can be seen in Figure 5, the time taken for a
scalar process to become uncorrelated was significantly shorter than
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Figure 5: Comparison of correlation times of Lagrangian scalar
and physical velocities over a range of initial Taylor Reynolds num-
bers. Lagrangian scalar velocity [Equation (15)], 4; Lagrangian
physical velocity [Equation (15)], ×; Kolmogorov timescale, ◦; In-
tegral timescale, �.
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the equivalent process in physical space, hence was closer to the
characteristics of a Markov process. This validates the derivation of
cmc, justifying its application in turbulent reactive flows.

6 Future work

We intend to perform simulations at higher Reynolds numbers by
using a cubic grid with the number of nodes per side increased
to 128. At this higher resolution, we will also validate the results
obtained in this paper. Simulations will be repeated for a Prandtl
number of less than unity in an effort to avoid aliasing in the scalar
field. We also intend to perform simulations where the turbulence
is forced, which would satisfy questions of statistical stationarity
(which is inherent in the theoretical analysis) posed by the fact that
the fields were decaying.
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