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Ensemble prediction and the role of higher
order moments in atmospheric regime
transitions
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Abstract

We investigate the role of higher order moments in ensemble pre-
diction studies using bred initial perturbations, ensemble averaged
direct numerical simulations (DNS), and an inhomogeneous statisti-
cal closure model for 2D turbulence interacting with Rossby waves,
mean fields and topography. Our closure methodology extends the
previous work of Epstein [1969, Tellus 21] and Fleming [1971, Mon.
Wea. Rev. 99], based on a cumulant discard hypothesis, to include
all moments higher than second order. Unlike previous quasi-normal
closures the quasi-diagonal direct interaction approximation (QDIA)
model does not need to be Markovianized to guarantee positivity of
energy and enstrophy and is valid for both strongly non-Gaussian and
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strongly inhomogeneous flows. In addition the QDIA does not become
unbounded for long integration periods as is the case for the eddy
damped quasi-normal method [Fleming, 1971, Mon. Wea. Rev. 99].
We compare the QDIA to DNS for Northern Hemisphere flow during
early November 1979 when a large and persistent high-low blocking
dipole formed over the Gulf of Alaska. The formation and decay of
atmospheric blocking events has typically been associated with a loss
of predictability induced by large scale flow instabilities. Results from
the QDIA statistical closure and DNS are shown to be in close agree-
ment even throughout periods of block formation. We also examine
distinct regimes of error growth arising from second and higher order
effects.
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1 Introduction Ch2

1 Introduction

The skill of numerical weather forecasts is determined by the instability
properties of the atmospheric flow, by analysis errors and by model defi-
ciencies. Early attempts at establishing the theoretical limits to atmospheric
predictability focused on error growth in deterministic forecasts with the er-
ror determined from the divergence of pairs of initially close states [1, 14].
However, it was realised that weather forecasting should be regarded as a sta-
tistical problem of predicting the probability density function of atmospheric
states or of calculating the moments of meteorological variables. Stochastic
dynamic prediction methods [2] were developed in order to consider the effect
of initial uncertainties on solving prognostic equations. This approach en-
ables the gathering of information on the error or uncertainty in the forecast.
Errors in the initial conditions arise through the impracticality of observing
the atmosphere in sufficient detail with the result that deterministic forecasts
fail over reasonable prediction periods. Stochastic methods [2] were applied
in an effort to incorporate probabilistic information into a forecast through
the direct forecast of mean and variance information obtained by solving in-
homogeneous models of the statistical hydrodynamics. In addition to being
impractical for large degrees of freedom these methods typically discard the
third and higher order moments.

Subsequently closure schemes based on the quasi-normal [10] and the
eddy-damped quasi-normal (EDQN) [13] hypotheses as well as Monte Carlo
(MC) based ensemble prediction and deterministic methods were compared
to the stochastic dynamic model in low resolution barotropic model stud-
ies [3]. It was shown that the stochastic dynamic model without moments
higher than second order was only valid for very short range predictions of the
order of a few days. In the EDQN model the three-point non-Gaussian corre-
lations are empirically damped as an approximation to the natural damping
effect that inclusion of all the higher order moments would introduce. At
the time that these stochastic dynamic and EDQN prediction studies were
performed Leith [8], Leith and Kraichnan [9], and Herring et al. [7] carried
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out analogous homogeneous predictability studies using more fundamental
statistical closure methods.

This article demonstrates how the recent statistical closure models devel-
oped by Frederiksen [4], O'Kane and Frederiksen [11] (hereafter 0F2004) and
Frederiksen and O’Kane [6] (hereafter F02005) offer a means by which to
quantify the relative importance of flow inhomogeneities and non-Gaussian
correlations. The quasi-diagonal direct interaction (QDIA) closure equations
were derived by Frederiksen [4] for general barotropic mean flows interact-
ing with inhomogeneous turbulence over topography on an f-plane. 0r2004
tested the performance of the closure including cumulant update and reg-
ularised variants while the generalisation to Rossby wave turbulence on a
(B-plane was formulated and tested by F02005. This inhomogeneous closure
approach enables an improvement not just on the third moment discard hy-
pothesis but is realisable and therefore does not become unstable for long
run times unlike the EDQN closures [3].

In ensemble prediction studies, independently perturbed initial conditions
are generated such that the fast growing errors in the analysis are approx-
imately represented. Toth and Kalnay [15] developed a method for gener-
ating ensemble perturbations that lead to improved mean forecasts. They
perturb the central forecast with initial random perturbations that they then
integrate forward and rescale periodically to small amplitude. The perturba-
tions thus effectively evolve according to an implicit tangent linear equation.
This method of bred perturbations allows information about the fast grow-
ing errors to be incorporated into the initial conditions for the forecast. For
particularly dynamic flows, such as when emergent coherent structures are
developing, errors arise due to fast growing large scale instabilities. Bred
vectors are stochastically and nonlinearly modified versions of the leading
Lyapunov vectors (LLVs); thus, after an initial transient period (= 7 days for
atmospheric flows) random perturbations tend to converge on the structure
of the LLvs. As the perturbations are modified using a global (or regional)
scaling factor the error growth associated with the evolving state of the model
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perturbation field develops within the breeding cycle and subsequently dom-
inates forecast error growth.

In this article we examine perturbation or ‘error’ growth during a period
in which a strong atmospheric high low blocking dipole formed over the Gulf
of Alaska around the 5th November 1979. Our ensemble prediction study in-
cludes the regime transition from strongly zonal to blocked flow including the
growing instabilities associated with block formation and decay. The inho-
mogeneous closure allows the quantification of error growth during transition
between two different error growth regimes: the first corresponds to a regime
where initial non-Gaussian effects are small in amplitude but cumulatively
important, the second regime occurs as transient errors grow rapidly, eventu-
ally saturating with non-Gaussian effects becoming increasingly important.
Throughout the closure calculations are regularised in the manner of 0F2004
in order that the effect of all higher order moments are correctly represented.

Section 2 briefly describes the spectral barotropic vorticity equation for
turbulent flow over topography with Rossby waves on a generalised (3-plane
and in the presence of a large scale flow U. Section 3 states the functional
form of the QDIA closure equations. The diagnostics are defined in Section 4.
Section 5 outlines our approach to ensemble prediction using the method of
bred perturbations. Section 6 compares closure and ensemble averaged direct
numerical simulations (DNS) for an error growth study with a 5 day breeding
cycle followed by a 5 day forecast period. Our conclusions are contained in
Section 7.

2 Barotropic flow on a (-plane

We base our studies of both ensemble prediction and the formulation of
statistical dynamical prediction on the generalised (3-plane barotropic model
for flow over topography. A more detailed explanation of the generalised
(-plane, conserved quantities, the statistical mechanical equilibrium theory
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and nonlinear stability theory for flow on the generalised [-plane can be
found in FO2005. As noted there, the full streamfunction is written in the
form ¥ = ¢ — Uy, where U is a large scale east-west flow and 1) represents
the ’small scales’. The evolution equation for the two-dimensional motion of
the small scales over a mean topography is then described by the barotropic
vorticity equation

% = —J( = Uy.C+h+ By + KUy) + V¢ + f°. M)

Here f° is the forcing, ' is the viscosity, and

J(,¢) = W& 900 2)

is the Jacobian. The vorticity is the Laplacian of the streamfunction: ( =
V%) . The scale height for the topography h = 2ugAH /(RTy) where H is
the height of the topography, R = 287Jkg ' K™! is the gas constant for
air, Ty = 273 K is the horizontally averaged global surface temp, ¢ is the
acceleration due to gravity, u = sin¢, ¢ is the latitude and A = 0.8 is the
value of the vertical profile factor.

The term k2Uy generalises the standard 3-plane by the inclusion of an
effect corresponding to the solid body rotation vorticity in spherical geometry
where ky is a wave number that specifies the strength of this large scale
vorticity. FO2005 noted that this additional small term results in a one-to-one
correspondence between the dynamical equations, Rossby wave dispersion
relations, nonlinear stability criteria and canonical equilibrium theory on the
generalised 3-plane and on the sphere.

The barotropic vorticity equation and the form-drag equation for U are
nondimensionalised by introducing the length and time scales a/2, where a is
the earth’s radius, and Q7!, the inverse of the earth’s angular velocity. With
this scaling we consider flow on the domain 0 < x <27, 0 <y < 27. With
the inclusion of relaxation towards the state U the form drag equation takes
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the form

ou 1 o -

— == —dS U-U). 3

o 5 )y AU =0) ()
Here, «v is a drag coefficient and S is the area of the surface 0 < x < 27,
0 <y < 27. In the absence of forcing and dissipation, equations (2) and (3)

together conserve kinetic energy and potential enstrophy.

We derive the corresponding spectral space equations by representing
each of the ‘small scale’ terms by a Fourier series; for example,

C(x, 1) =) Gelt) exp (ik - x) (4)

where
1

C(t) = W/o ’ d*x ((x,t) exp (—ik - x), (5)

and x = (2,9), k = (ko, k), k = (k2 + k2)"/? and (_x is conjugate to (k.
As noted in equation (4.1) of F02005, the sums in the consequent spectral
equations run over the set R consisting of all points in discrete wavenumber
space except the point (0,0). The form-drag equation for U are written in
the same form as for the small scales by defining suitable interaction coeffi-
cients, representing the large scale flow as a component with zero wavenumber
and extending the sums over wavenumbers. Thus the spectral form of the
barotropic vorticity equation including large and small scales is compactly
written as

(O mR)G() = 303k +p+ ) [K(k, P, a)plq

peT qeT
+ A(k7 p7 q)C—ph—q] + flg ) (6)
where T = R U 0 and the interaction coefficients are defined in FO2005.

Here the complex 1y(k) is related to the viscosity © and the intrinsic
Rossby wave frequency wy by

vo(k)k? = Dk* + iwy (7)
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where

ks
=Dz ®)

We define (_g = ikoU , (o = (¥, and introduce a term h_q that we take to be
zero but which could more generally be related to a large scale topography.
Note that U is real and we define (o to be imaginary. This is done to en-
sure that all the interaction coefficients that we use are defined to be purely
real. Also with (o = —ikoU, f3 and vy(ko) are defined by f§ = alp with
vo(ko)ks = av. We also consider the case where the bare forcing is replaced

by a relaxation term of the form Sy (t) = x((2™ — (i) where & is the strength

of the relaxation and (P® are linearly interpolated daily observed fields.

3 The closure equations

Consider an ensemble of flows satisfying the generalised spectral barotropic
vorticity equation (6). We express the vorticity (i and forcing f{ in terms
of their ensemble average means, denoted by (), and the deviations from the
means, denoted by " :

Go= G+ =D+ f. 9)

The equation for the first moment or ensemble mean,
0
(a + 1 (k)E?) (Ge) = Xp: Eq: é(k+p+q)
[K(k, p, Q){<C7p><ch> + C,p7,q(t, t>} + A(k7 p, Q) <<fp>h*q]
+ (D) (10)

depends on the two-point cumulant

~

Cpalt:s) = (Cp(t)C-a(s)) - (11)
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Thus, from equation (10) see that to determine the mean field we need
an equation for the two-point cumulant C_, _4(¢,t). Similarly the second
order cumulant requires knowledge of the third order cumulant which in
turn depends on the fourth and so on. We are consequently faced with two
problems, namely, the cost of computing the full covariance matrix, which is
prohibitive at any reasonable resolution, and secondly the moment closure
problem.

The second order expression for the diagonal two-time and single cumu-
lants is expressed in terms of two- and three-point cumulants as

(% + (k) C (¢, 1)) = Nie(t, 1), (12)
(% + 2000 (K)EH) O (1, 1) = 2NNy (1), (13)

where it is also convenient to separate the enstrophy production into the
contributions from the two-point (inhomogeneous) and three-point (non-
Gaussian) terms:

Ni(t, ') = NL(t,t)+ N2(t, 1), (14)
Nty = > > 6k +p+a){Ak p,a)Cp it )h_q (15)

+ K(k, p, @)[{Cp (1) Cogxc(t, 1) + Cp xc(t, 1) {C-a(E))]},
Nt 1) = D> dk+p+ @)Kk p,a){(pt)q()C k()

+ (@) (16)

Here we use the abbreviation Cy(t,#) = Ci_x(t,t') and (f2(t)G(t)) is a
forcing term (see equation (19)). The off-diagonal elements of the response
function, which measures the change in the vorticity perturbation due to an
infinitesimal change in the forcing, is

Aot = (550, )
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so that the second order expression for the evolution of the diagonal two-time
response function takes the form

(54 (IR Rl 1)

= 3 S 5k +p+ a)Ak, p,a)R_p(t,)h_q
+Y > d(k+p+aq)K(k p.q)

X [(Cp(t)) Roquel(t ) + Ropac(t, 1) {C-q(t))] (18)

where Ry(t,t') = Rxx(t,t") with Ry(t,t) = 1 and Ry (t,t') =0 fort <t'. We
may Now express

OB = / ds FO(t, s)Ri(t's), (19)

to
where FO(t,s) = (f2(t)f2*(s)) is the variance of the random forcing.

The quasi-diagonal DIA closure equations overcome the problem of com-
putational cost by expressing the off-diagonal two-point cumulant and re-
sponse functions and higher order cumulants in terms of the diagonal ele-
ments. The resulting equations for the mean field, two-point cumulant and
response functions are then expressed entirely as functionals of the diago-
nal elements of the two-point cumulant and response functions. These QDIA
equations are computationally much more efficient than the general inhomo-
geneous closure equations which are intractable at any reasonable resolution.

Specifically, we have the following functional forms:

Q

Cie1(t,t) CR2 (1) [Cie, Ric, (Gie)s T (20)
Rt t) ~ RN (t1)[Cx, R, (C), M, (21)

(GO Gx)) ~ (Ge(H)Ca(t)Gk()) ™ [Ch, Ric, (Ge)s ] - (22)
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The explicit expressions for C\) (¢, ), R (¢, 1) and (Ge()C () Gxe ()P
and including an even more Computatlonally efficient restart procedure can
be found in 0F2004 and FO2005.

4 Diagnostics

Next, we define a number of diagnostics that we employ in the following sec-
tion for analysing the predictability studies. We define the zonally averaged
transient (error) e’ (k,,t) and mean e (k,,t) kinetic energy spectra by

T (kayt) = %Z[Ck(t,t)] Ik (23a)

M(kart) = —Z (Ge(t)) {Cx(0)] /7. (23b)

The kinetic energy of the large scale flow is plotted at k, = 0.

We also use a measure based on palinstrophy production to characterise
the error growth during forecasts. For this it is useful to separate the en-
strophy production terms as in equation (14) into the contribution from the
two-point inhomogeneous N(¢,t), and three-point non-Gaussian N9(t,t),
terms. The palinstrophy production measure based on the three-point non-
Gaussian terms is just the skewness S¥ that has been commonly used to
examine the small scale behaviour of homogeneous [5] and inhomogeneous
turbulence [11]. However, the current regime of small amplitude transient
errors growing on larger amplitude mean flows differs from these previous
studies in that most of the transfer results from the two-point inhomoge-
neous production. One of our aims is to quantify the relative contribution of
the two-point inhomogeneous and three-point and higher order non-Gaussian
terms to both the instantaneous and cumulative error growth. Examination
of both the palinstrophy production and kinetic energy spectra allows this
quantification.
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The palinstrophy production measure PM is defined in terms of the tran-
sient enstrophy F, transient palinstrophy P and palinstrophy production K:

PM@) = 2/C/( PF?Y, (24)
Ft) = §ch(t,t), (25)
k

P) = 53 Clt (26)

Kt) = K'(t)+K5(t) =) _E*Ni(t.t)+ > KNJ(tt).  (27)

k

5 Error growth during blocking

Our aim is to compare closure and ensemble averaged DNS results for a 5 day
forecast starting after an initial 5 day breeding period using the closure to
separate and quantify the various contributions to error growth with the DNS
used as a measure of the accuracy of the closure. We focus on the ensemble
predictability of 500 hPa Northern Hemisphere atmospheric flows during a
period in October and November 1979 in which a large scale blocking high-
low dipole formed over the Gulf of Alaska on 5th November, amplified and
persisted until 12th November and then weakened and moved downstream.

We examine the evolution of transient error fields in closure and DNS
calculations on trajectories similar to that taken by the atmospheric 500 hPa
field between the 26th October and the 8th November 1979. For the mean
fields within a barotropic model to closely follow an observed trajectory it
is necessary to specify suitable time-evolving source terms. A relaxation
term of the form Sy (t) = k(2™ — () is added to the right-hand side of the
spectral barotropic vorticity equation where (2P are the linearly interpolated
daily observed fields. We start the simulation with the observed 500 hPa
streamfunction for 1200 UTC on the 26th of October and use an e-folding
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relaxation time (k') of 2 days over the 10 day period (5 day breeding, 5 day
forecast). The source term is calculated at each time step of the unperturbed
simulation, stored and then applied to both perturbed ensemble DNS runs
and to the mean field equation of the closure. The Doppler frequency was
treated perturbatively and we present results for k2 = 1/2 and 3 = 1/2 which
has a dimensional value of 1.15 x 10" m~!s~! and is typical of the S-effect
at 60° latitude. Throughout a viscosity of 2.5 x 10° m? s~! corresponding to a
non-dimensional value of 7 = 3.378 x 10™* is used. Both closure and DNS are
run with a 1 hour time step. The initial errors fields, prior to breeding, have
Gaussianly distributed isotropic spectra that are taken to be approximately
constant with wave number. These initial perturbations are several orders
of magnitude less than the mean field at all wave numbers. The DNS shows
ensemble averaged results from 1800 simulations. All calculations are for
circularly truncated k = 16 (C16) wavenumber space.

We take a continuous approach to breeding, that is, re-scaling after every
evolved time-step. For atmospheric flows it is the large scales that are of pri-
mary importance in determining the dynamics and hence error growth; thus
the global breeding scaling parameter is implemented in terms of streamfunc-
tion, that is,

[k Cilto, to) /K]
0 = |G .
ék(t—&-) = g(t)ék(t—>7 (29)
C(t4,ty) = g)g(t)Cilt-,t-), (30)
Cilte,t)) = g(t)g(t)Cult_,t"), (31)

where — and + indicate prior and posterior fields. In both the DNS and
closure the off-diagonal elements of the covariances are adjusted. In the
DNS this occurs through direct application of the global scaling factor to the
vorticity field, equation (29), whereas in the closure it occurs through the
diagonal cumulant and is thus consistent with the assumptions of the QDIA.

After the breeding period the evolved error fields are prepared so that
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they contain information about the fastest growing errors (incorporated dur-
ing the breeding cycle) arising due to instabilities present in the underlying
dynamics of the flow. Thus the forecast errors contain, by construction, in-
formation about the underlying dynamics and are thus prepared to capture
the behaviour of the fast growing error modes of the flow.

6 Ensemble prediction

Figure 1 compares the DNS and regularised QDIA calculations beginning on
the 26th October 1979. Over both the initial 5 day breeding period, starting
from isotropic initial perturbations (Figure 1a), and 5 day forecast we observe
that at all times the mean kinetic energy spectra are in good agreement
(Figure 1b) and that the bred perturbations are clearly “peaked” at k = 3
which is the fastest growing scale. On day 10 it is evident that the error
field has saturated at the small scales and hence small scale predictability
is being lost. O’Kane and Frederiksen [12] compared similar calculations
using cumulant discard and unregularised variants of the QDIA finding that
omission of higher order non-Gaussian correlations leads to under-prediction
of the evolved small scale error kinetic energy.

From the palinstrophy production measure, Figure 1d), observe that there
broadly exists four distinct regimes in the error growth over the depicted
10 day experiment. The first two regimes, corresponding to the organisation
and formation of coherent error structures, are contained within the 5 day
breeding period starting on the 26th October 1979. During the first day
of the breeding period there is a dramatic and rapid growth in the palin-
strophy production measure P as the initial error field evolves from Gaus-
sian isotropic initial conditions towards the leading instability vectors associ-
ated with growth of the off-diagonal covariances. From approximately day 2
through to day 5 the palinstrophy production measure grows slows and its
evolution is now largely determined by flow inhomogeneities. At day 5 the
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F1GURE 1: Bred perturbations are generated over a 5 day period starting on
the 26th October 1979, followed by a 5 day forecast period. The initial, day 5
and day 10 mean and perturbation kinetic energy fields (non-dimensional)
as a function of zonal wavenumber are shown for DNS and regularised QDIA
calculations in figures a), b) and c) respectively. Figure d) shows the evolving
palinstrophy production measure over the entire 10 day period.
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breeding ends and the forecast begins. The final two regimes occur between
days 6 and 7 and from day 7 onwards. Bred initial forecast perturbations
result in fast growing instability vectors at the large scales around day 6
where the error field amplitude is observed to undergo rapid increases, with
a corresponding decrease in PM. From day 7 onwards the growth of the error
amplitude is much reduced as the errors start to saturate. Error saturation
at the small scales occurs at about day 10.

7 Conclusions

We have examined the role of higher order moments in ensemble prediction
studies using the method of bred perturbations and compare a new sta-
tistical closure with ensemble averaged direct numerical simulations. The
regularised QDIA closure extends previous statistical closures and stochastic
dynamic methods by including all higher order moments. It thereby avoids
many of the problems, such as under estimated forecast error variances, asso-
ciated with methods based on a cumulant discard or quasi-normal hypothesis.
Kinetic energy spectra have been used to show the close comparison between
closure and DNS at the large scales. We also defined a palinstrophy produc-
tion measure and employed it to show the close agreement between closure
and DNS at the small scales. We identified four distinct regimes associated
with error organisation and growth during a 10 day experiment consisting of
5 days of continuous breeding and 5 days of forecast. We consider a period
during which a high-low blocking dipole was forming over the Gulf of Alaska
in early November 1979 generating fast growing large scale flow instabilities.
Additional studies [12], where non-Gaussian correlations and the two-point
off-diagonal variances are removed, such as when a quasi-normal assumption
is made, showed that error growth is severely underestimated resulting in
poor predictability estimates. The QDIA closure allows the quantification of
the relative contributions from inhomogeneous and non-Gaussian terms to
the palinstrophy production. O’Kane and Frederiksen [12] showed that it is
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not until the error field saturates that instantaneous non-Gaussian correla-
tions become significant; however, they have important cumulative effects on
the small scale energy spectra even over short evolution periods.
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