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Abstract

We develop an approach for solving large scale convex quadratic
problems with quadratic matrices subject to linear equalities and box-
constraints. These problems appear in real-life applications. At first
glance, this is a simple convex optimisation problem. However, the size
of this problem (109 variables and 106 constraints for some applications)
makes it very challenging to apply traditional convex optimisation tech-
niques. Therefore, one needs to develop a specific algorithm for solving
such kind of problems. We apply a combination of the Interior Point
method and Sherman–Morrison formula to solve this problem. We
test our approach on smaller size datasets (1000 variables and 100 con-
straints). Our numerical experiments show that this combination is
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efficient, fast and computationally stable. This approach is suitable for
large scale convex quadratic optimisation problems.
Keywords: large scale convex quadratic problems, interior point meth-
ods, Sherman–Morrison formula, social accounting matrices
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1 Introduction

Our goal is to apply the Interior Point method to a large scale convex quadratic
problem with linear and box-constraints. This problem appears in many real-
life applications: social accounting matrix reconciliation problem (samrp) [16],
geodesic problems [6], signal processing [12], and many others. The original
samrp can be formulated as the minimisation of a convex quadratic function
subject to linear equality and box constraints:

min xTMx , subject to Ax = b , xl 6 x 6 xu , (1)

whereM is a positive diagonal matrix, A is a matrix of constraints (full rank),
xl and xu are lower and upper bounds. The dimension of the optimisation
problem in samrp is up to 109 and the number of linear constraints is up to 106.
At first glance, samrp is a simple convex optimisation problem. However,
the size of this problem makes it very challenging to apply traditional convex
optimisation techniques. When modelling the economy of a particular region,
the size of the problem is significantly lower, but still around 106 variables and
105 constraints (samrp regional or samrpr). Usually a number of closely
related samrps for consecutive time periods need to be solved.

The constraint matrix A in (1) represents the relationships between different
industry sectors. Part of this matrix (so called balancing constraints, which
ensure that the net monetary input into each industry sector is the same
as its net monetary output) is the same every period. Other constraints
may change from one period to another (aggregation and disaggregation
constraints, which ensure that certain partnership agreements are met), but
this change is not very significant, since it takes much time and resources
to change the established relationships. Also, in many cases two industries,
which are not normally related to each other, will stay unrelated in the next
time period. Therefore, only a few elements of the constraint matrix should
be updated to obtain the constraint matrix for the next period. Another
important issue is that the balancing constraints are much more dense than
the aggregation/disaggregation constraints.
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Example 1. Consider (1) with 108 variables and 105 constraints. This means
that the original social accounting matrix contained 104 =

√
108 industry

sectors (the variables in samrp are all the entries in of a square matrix of
size 104, this matrix represents the exchange between the sectors). Then
the number of balancing constraints is 104 and the rest (105 − 104) are the
aggregation/disaggregation constraints. Therefore, the balancing constraints
constitute around 10% of all the constraints (same for every period) and
90% are aggregation/disaggregation constraints (differ from one period to
another, but not significantly).

The rest of this Introduction briefly discusses several main approaches to
solve this problem:

• Gaussian Elimination method (gem);

• Conjugate Gradient method (cgm);

• Augmented Lagrangian method (alm); and

• Interior Point method (ipm).

gem and cgm can be used to solve a relaxation of (1) without box-constraints.
Some additional analysis is necessary to ensure that the box-constraints also
hold.

gem is much older than cgm and ipm. The main advantage of this group
of methods is that when the solution is obtained this would be the exact
solution rather than its approximation (cgm and ipm). At the same time,
if for some reason the procedure was not completed (for example, high
computational time), then there would be no improvement (in contrast, cgm
and alm improve the objective function value at every iteration). Godzio
and Grothey [8] reported that for some applications (when the structure of
the constraint matrix is known to fit into certain patterns) they were able
to solve a problem with over 109 variables using gem. The program ran on
1280 processors.

cgm is a very efficient class of iterative methods for solving sparse systems
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of linear equations with real symmetric positive definite matrices, originally
proposed by Hestenes and Stiefel [10]. Its convergence is improved drastically
by applying an appropriate preconditioner (Golub and Van Loan [7]). However,
the problem of constructing this preconditioner is itself a very challenging
problem.

alms are a certain class of algorithms for solving constrained optimisation
problems, where a constrained optimisation problem is replaced by a series of
unconstrained problems. These methods were first proposed by Hestens [9]
and Powell [15]. Since the 1980s, ipm have had increasing attention. However,
according to Nocedal and Write [14], alm is also very efficient.

ipm (Barrier Methods) are a certain class of methods to solve linear and
nonlinear convex optimisation problems. These algorithms have been inspired
by Karmarkar’s algorithm [11]. The original Karmarkar’s algorithm was
not computationally efficient outside of the class of linear problems, but
its modern implementations are computationally efficient on an extremely
wide class of convex problems (Nesterov and Nemirovskii [13]). One of the
disadvantages of this group of methods is that one needs to solve large linear
systems at each iteration. This can be done by cgm and gem. We propose a
modification of ipm which significantly simplifies this process. Our approach
is based on the Sherman–Morrison formula [17], which enables one to calculate
the inverse to a matrix update when the inverse of the original matrix is
known (or can be computed inexpensively). In many cases the calculation
of matrix inverse is not the best way to solve linear systems [5]. However,
for some particular application (samrpr) this kind of approach is efficient
(section 4). Dongarra et al. [4] demonstrated that in some practical problems
it is necessary to calculate the inverse explicitly. Also, they calculated the
inverse of dense matrices (10000× 10000) using lapack [1].

Kim et al. [12] modified ipm, applying cgm with certain preconditioners
to solve large scale least squares problems appearing in signal processing
and statistics. They report that their method is able to solve large sparse
problems with a million variables with high accuracy in a few tens of minutes
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on a pc. These results inspired us to develop a modification of ipm, which
would be able to solve (1) efficiently.

We work with the important special case

min xTMx , subject to Ax = b , x > 0 , (2)

where the simple bounds of (1) are replaced by non-negativity constraints.

2 Interior Point Method

Karush–Kuhn–Tucker conditions (kkt) have been obtained for smooth opti-
misation problems. In most cases, the kkt conditions is a system of equalities
and inequalities. In the case of linear programming problems and some other
classes of convex problems (including samrpr) these conditions are necessary
and sufficient optimality conditions. Therefore, solving samrpr (or samrp)
and solving the corresponding kkt system are equivalent. Most ipm can be
interpreted as methods for solving kkt systems.

2.1 Equality constrained subproblem

Consider the following convex optimisation problem with equality constraints,
for example, a relaxation of the original problem (1) without box-constraints:

min f(x) subject to Ax = b , (3)

where f(x) = xTMx , and M is a positive definite matrix. Then the corre-
sponding kkt system is

Ax∗ = b , ∇f(x∗) +ATv∗ = 0 , (4)

where x∗ is an optimal solution for (3), and v∗ is the corresponding dual
variable.
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Let x∗ = x+∆x , where ∆x is the Newton step which has to be added to the
initial strictly feasible x (that is, feasible and the box-constraints are satisfied
as strict inequality constraints) to solve (3). Then the above kkt can be
reformulated as{

A(x+ ∆x) = b ,
∇f(x+ ∆x) +ATv∗ = 0 ;

⇐⇒
{
A∆x = 0 ,
∇f(x) +∇2f(x)∆x+ATv∗ = 0 .

(5)
Therefore, the final system to obtain ∆x is[

∇2f(x) AT

A 0

] [
∆x

v∗

]
=

[
−∇f(x)

0

]
. (6)

If the problem can be formulated as (relaxation without box-constraints)

min f(x) = xTMx , subject to Ax = b , (7)

then it can be solved in one step by assigning x∗ = x+ ∆x , where x∗ is the
optimal solution to (7), x is a starting solution (has to be feasible), and ∆x is
a Newton step obtained by solving[

2M AT

A 0

] [
∆x

v∗

]
=

[
−2Mx

0

]
,

where v∗ is a dual variable.

If the objective function f(x) is not quadratic, then more than one Newton
step may be necessary. The corresponding algorithm is listed in Algorithm 1.

This algorithm is similar to Algorithm 11.1 from Boyd’s book [3]. The
next step is to introduce an algorithm which can also take into account the
inequality constraints (box-constraints).
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Algorithm 1: Pseudocode for Barrier Method’s equality subproblem
Data: Start with a feasible initial solution x0, ε > 0 is the accuracy.

1 repeat
2 Compute the Newton step ∆x by solving[

∇2f(x) AT

A 0

] [
∆x

v∗

]
=

[
−∇f(x)

0

]
, (8)

where ∇2f(x) is the Hessian, ∇f(x) is the gradient. ;
3 Compute the Newton decrement λ2 = ∆xT∇2f(x)∆x . (The

value λ2/2 gives a good estimate of the difference between the
current value of the objective function and the optimal value.) ;

4 if λ2/2 > ε then
5 Choose a step size α (line search). (Different types of line search

may be used, for example, backtracking line search.) ;
6 Update x = x+ α∆x . ;
7 end
8 until λ2/2 6 ε;

2.2 A barrier method for inequality constrained
optimisation

In the case of inequality constrained optimisation, the kkt conditions are
more complex than they are in the case of equality constrained minimisation.
In this case the Barrier Method is based on solving a sequence of unconstrained
minimisation problems (or problems with linear equality constraints only, see
section 2.1).

The problem is now formulated as

min
k

ε
xTMx+ϕ(x), subject to Ax = b , (9)

where ε is the accuracy, k is the number of functions which contribute to
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Algorithm 2: Pseudocode for Barrier Method (inequality constraints)
Data: Start with a strictly feasible initial solution x0, t = t0 > 0 ,

µ > 1 , ε > 0 .
1 repeat
2 (repeat until we reach an ε-suboptimal solution of the original

problem.);
3 Centering Step: Compute x∗(t) as a solution of the problem

min txTMx+ϕ(x), subject to Ax = b , (10)

starting at x. (This can be done through the Barrier Method
(equality constraints): the new objective function is
txTMx+ϕ(x).);

4 Update x = x∗(t), t = µt ;
5 until k/t < ε;

box-constraints (one per box constraint if the upper bound is unlimited or two
per box-constraint otherwise), ϕ(x) is a barrier function (we are concentrating
on logarithmic barrier functions).

The function ϕ(x) = −
∑k

i=1 log(fi(x)) is a logarithmic barrier function (lbf),
where fi(x) = xi , i = 1, . . . ,k , are the nonnegativity constraints. lbf grows
without bounds if fi(x)→ 0 (at the barrier of the feasible region) and therefore
it ‘helps’ to keep the solutions feasible.

The final algorithm is listed in Algorithm 2.

For box-constraints with all variables to be nonnegative (that is, x > 0)
∇2ϕ(x) ∈ Rn×n is a diagonal matrix with the ith diagonal element equal-
ing 1/x2i , and the gradient ∇ϕ(x) = −(1/x1, . . . , 1/xn)

T ∈ Rn.

Therefore, ipm enables one to reduce samrpr to solving a sequence of large
linear system. One way to solve these systems is through cgm or gem.
Another way is to apply Sherman–Morrison formula (see section 3 for details).
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2.3 Computational concerns

There are two main issues which should be studied before applying ipm.

• First of all, it is essential to find a strictly feasible initial solution. If
this solution is not obvious, then one can find such a solution by solving

min
k

ε
s , subject to Ax = b , −fi(x) 6 s , i = 1, . . . ,k . (11)

In some cases, this stage of obtaining a strictly feasible solution is called
Phase 1 and then the actual Barrier Method (inequality constraints) is
called Phase 2.

• The second problem is how to solve the linear systems appearing in (8).
This problem has to be solved several times at Step 1 of the Barrier
Method (inequality constraints). A possible approach to solve this
system is indicated in section 3.

3 Matrix inverse computation: Cholesky
decomposition and Sherman–Morrison
formula

3.1 Inverse through Cholesky decomposition

We apply a well-known two stage approach for calculating the inverse of a
positive definite matrix [7].

• Calculate a decomposition of the original matrix into the product
of a lower triangular matrix and its transpose B = LLT (Cholesky
decomposition).

• Calculate the inverse of L and construct B−1 = (L−1)TL−1.
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Both stages of this procedure allow a certain level of parallelization, which is
essential in the case of large dimensional problems.

3.2 Sherman–Morrison formula

The Sherman–Morrison [2, 17] formula enables one to calculate the inverse of
a matrix

W̃ =W + VUT , (12)

where W is an easily invertible matrix, and U,V ∈ Rn: namely,

W̃−1 =W−1 −
W−1VUTW−1

1+UTW−1V
. (13)

The above formulation first appeared in Bartlett’s paper [2]. One problem
with applying this formula is that in some cases we cannot be sure that the
denominator

1+ VTW−1U 6= 0 .

Sherman and Morrison [17] originally worked with a matrix update, where
only one element is to be updated at a time; for example, for updating wpq

(this element corresponds to the pth row and qth column of the original
matrix W) one should use U and V, such that all the elements in these
vectors are zero, except up and vq, namely, upvq = δ , where δ is the update
for the element wpq.

Sherman and Morrison mentioned [17] that for this type of update, the
equality 1 + VTW−1U = 0 means that W̃ is singular. However, the formal
proof was left for the reader to complete.

In more general cases, when more than one element is updated, the following
theorem applies.

Theorem 2. If bothW and W̃ =W+VUT are invertible, then 1+UTW−1V 6=
0 .
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Proof: Suppose that both W and W̃ = W + VUT are invertible,
but 1 + UTW−1V = 0 . In this case W̃W−1 is non-singular and therefore
W̃W−1V 6= 0 , unless V = 0 , where 0 means “zero-vector”, that is, all the
coordinates are zeros.

The case when V = 0 is not interesting, since this means that there is no
matrix update. Moreover, if V = 0 , then 1 + UTW−1V 6= 0 . Therefore,
V 6= 0 .

Since 1+UTW−1V = 0 , W̃W−1V = V + VUTW−1V = V − V = 0 .

This contradiction completes the proof. ♠

Therefore, to calculate W̃−1 one needs to know W−1. This approach may be
beneficial in the applications, where W−1 is known or W is ‘easily invertible’.

In samrpr, the constraint matrix A is full rank, therefore AAT is non-singular.

4 Sherman–Morrison formula in IPM

4.1 IPM implementation using Sherman–Morrison
formula

Recall that in ipm one has to solve the system[
∇2[tf(x) +ϕ(x)] AT

A 0

] [
∆x

v∗

]
=

[
−∇[tf(x) +ϕ(x)]

0

]
, (14)

where ∇2[tf(x) +ϕ(x)] = tM+ I+ E and E = diag(1/x2i − 1).

In most cases, samrpr only requires non-negativity box-constraints. Then the
system matrix is constructed as follows (for more general box-constraints the
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procedure is the same, but more constraints have to be taken into account):[
∇2(tf(x) +ϕ(x)) AT

A 0

]
=

[
I AT

A 0

]
+

n∑
i=1

ViV
T
i +

n∑
i=1

PiQ
T
i ,

where

• Vi ∈ Rn+m, all the elements of Vi = (vi1, . . . , v
i
m+n)

T are zeros except
vii =

√
tmi , where mi is the ith diagonal element of M;

• Pi ∈ Rn+m, all the elements of Pi = (pi1, . . . ,p
i
m+n)

T are zeros except
pii = (1− xi)/xi ;

• Qi ∈ Rn+m, all the elements of Qi = (qi
1, . . . ,q

i
m+n)

T are zeros except
qi
i = (1+ xi)/xi .

In order to solve (14) one needs to calculate

B =

[
I AT

A 0

]−1

, (15)

and apply Sherman–Morrison formula n times (in pairs):

W̃ = B+

n∑
j=1

(VjV
T
j + PjQ

T
j ), (16)

for each t. At each step of this procedure the updated matrices are invertible,
since all the diagonal elements of the top left block of matrix W are positive.
Therefore, 1 + UTW−1V 6= 0 at each step (break-free process). Each pair
update VjV

T
j + PjQ

T
j affects only one element of B, namely, the element (j, j).

Aggregation of these two updates in a single pair update allows one to reduce
the computational time.

Now consider B from (15). Suppose that B has the following structure

B =

[
B1 BT

2

B2 B3

]
, (17)
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where B1 ∈ Rn×n has the same dimension as I in (15), B2 ∈ Rm×n has the
same dimension as A, and B3 ∈ Rm×m has the same dimension as 0 from (15).
Then 

B1 +A
TB2 = I ;

AB1 = 0 ;
BT
2 +ATB3 = 0 ;
ABT

2 = I .

(18)

Finally, B1 = I − AT (AAT )−1A , B2 = (AAT )−1A and B3 = −(AAT )−1. If
all the rows of A are linearly independent, then

rank(AAT ) = rank(ATA) = rank(A) = rank(AT ) = m .

Thus AAT is a full rank square matrix and its inverse (AAT )−1 ∈ Rm×m exists.
The main question now is how to find (AAT )−1. Since m < n this problem is
not as hard as the inverse in the original problem. The factorization (AAT )−1

can be found by applying Cholesky decompositions and triangular inverse
(section 3). Dongarra et al. [4] reported that the corresponding lapack
subroutines are able to invert large matrices (25000 × 25000). This is not
enough for samrp, but it is reasonable for samrpr and other applications.

According to (16), we also need to apply n pairs of updates. However, these
updates are not so computationally expensive.

4.2 Matrix update implementation using
Sherman–Morrison formula

Our main computational difficulty (section 4.1) is to obtain (AAT )−1. Sup-
pose that we know (AiA

T
i )

−1 for the ith time period. Now we need to
calculate (Ai+1A

T
i+1)

−1 for the next time period. Suppose that only one
element ai

pq of Ai has to be updated, namely, ai+1
pq = ai

pq + δ . Then
Ai+1 = Ai + xy

T , where x ∈ Rm is an m-dimensional column vector with all
the coordinates equal zero, except xp = δ , and y ∈ Rn is an n-dimensional
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column vectors with all the coordinated equal zero, except yq = 1 . Therefore,

Ai+1A
T
i+1 = (Ai + xy

T )(Ai + xy
T )T = (Ai + xy

T )(AT
i + yxT )

= AiA
T
i + xyTAT

i +Aiyx
T + xyTyxT .

Hence, (Ai+1A
T
i+1)

−1 is calculated by applying the Sherman–Morrison formula
three times:

1. V = x , UT = yTAi ;

2. V = Aiy , UT = xT ;

3. V =
√

(yTy)x , UT =
√

(yTy)xT .

If several elements are to be updated, then the above procedure has to be
applied more than once. During the process ensure that the denominator
in (13) is not zero.

4.3 Advantages of solving linear systems through
matrix inverse in SAMRPR

In many cases solving linear systems through calculating the corresponding
matrix inverse is not a very efficient approach. However, in this application
(samrpr and samrp) the matrix inverse based approach together with the
usage of Sherman–Morrison formula allows one to

• calculate an update for the matrix inverse appearing at different itera-
tions of ipm (inside one time-period);

• update (AAT )−1 when moving to the next time period.

Overall, the algorithm for solving samrpr over several periods of time,
contains three steps.
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1. Calculate the inverse of AAT . This can be done in parallel (Cholesky
decomposition and Triangular inverse). Use (AAT )−1 and Sherman–
Morrison formula to calculate the inverse of the matrix, appearing
in ipm (first iteration).

2. Use Sherman–Morrison formula to calculate the inverses of the matrix
updates, appearing in ipm at every iteration (same time-period).

3. Use Sherman–Morrison formula to update (AAT )−1 for the next time-
period. In this case, one needs to make sure that at every matrix update
the final matrix is non-singular.

5 Numerical experiments

This section considers one time period for samrpr and applies the described
matrix inverse approach to solve linear systems, appearing in ipm. We compare
the results, obtained by calculating matrix inverses using the corresponding
Matlab command and Sherman–Morrison formula. The main goal of this
section is to test the computational time and robustness of the matrix inverse
calculation procedure based on the Sherman–Morrison formula.

The results of numerical experiments are presented in Tables 1 and 2. These
tables compare the results of numerical experiments with nearly identical core
codes. The only difference between these algorithms is that in the case of
“Default Inverse” the inverse matrix (15) was calculated by the corresponding
Matlab command, while in the case of “Sherman–Morrison-based” this matrix
was calculated using our Sherman–Morrison-based approach.

In Table 1, the column “Final obj. fun.” gives the final objective function
value, and “Time ratio” lists the ratio of the corresponding computational
time, namely, if this ratio is lower than one, then the Sherman–Morrison based
approach is faster. In Table 2, the heading “Linear violation” corresponds
to the linear constraint violation (Euclidian norm of the corresponding error
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Table 1: Default inverse and Sherman–Morrison-based inverse: time and
value.

Dimension Defaults Inverse Sherman–Morrison Time ratio
Final obj. fun. Final obj. fun.

50× 100 23.6 29.9 0.93
50× 200 44.9 46.1 0.97
50× 500 106.6 106.8 0.89
50× 1000 203.1 208.0 0.93
100× 200 44.9 47.8 0.95
100× 500 106.6 108.5 0.96
100× 1000 203.1 209.7 1.16

Table 2: Default inverse and Sherman–Morrison-based inverse: constraint
violation.

Dimension Defaults inverse violation Sherman–Morrison violation
Linear Box Linear Box

50× 100 3.36 −0.44 4e−16 feasible
50× 200 3.07 −0.46 3e−16 feasible
50× 500 3.10 −0.49 5e−16 feasible
50× 1000 3.34 −0.51 7e−15 feasible
100× 200 3.24 −0.46 5e−16 feasible
100× 500 3.27 −0.49 5e−16 feasible
100× 1000 3.57 −0.52 1e−14 feasible
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vector ‖Ax − b‖) and “Box violation” corresponds to the box-constraint
violation: minimal value among the negative coordinates or “feasible” if all
the coordinates are positive.

Observe from Table 1 that the computational time is better for the Sherman–
Morrison-based approach (except the last one). The final objective function
value is better for the Default Inverse approach. However, from Table 2 one
can see that these better objective function values were reached on infeasible
points. Moreover, most of the final results, obtained in the case of the Defaults
Inverse approach are infeasible (both, linear and box-constraints violation). It
is possible that a more precise choice of the internal parameters (for example,
in the backtracking search subroutine) may allow one to obtain feasible
results, but in this case the computational time will be increased significantly.
Therefore, I conclude that the Sherman–Morrison-based approach is much
more robust (slightly faster and much more stable) then the Default Inverse
one, especially in the case of high dimensions.

6 Conclusions and further research directions

We show that our implementation of ipm is efficient for solving these problems.
The main obstacle in our computation experiments is the repeated construction
of large dimensional matrix inverses. We demonstrate that our Sherman–
Morrison-based inverse calculation is slightly faster and more robust compared
to the default inverse used in Matlab. In particular, our approach is much
more stable than the default one. Also, it has been demonstrated that the
proposed procedure is break-free, since 1+UTW−1V 6= 0 .

In our experiments, we only worked with matrices which are much smaller than
the real matrices used in samrp or samrpr. The main reason is Matlab’s
computational time. In the future we plan to develop a more elaborated
procedure with parallelisation, which can be applied to a real samrpr or
even samrp.
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The Sherman–Morrison-based Inverse computation will be used in our future
studies due to two main reasons. First, it is very efficient, fast and computa-
tionally stable. Second, it can be efficiently parallelised (calculation of AAT

through Cholesky decomposition and Triangular inverse), which is essential
for this type of applications.

In many applications, the repeated solving of linear systems through the
corresponding matrix inverse is not a very efficient approach. However, for
samrpr and some other application this approach is very efficient, since it
allows one to update the corresponding matrices inside ipm and also when
moving to the next time-period. In this case, one needs to make sure that at
every matrix update the final matrix is non-singular. This is a very important
issue, which will be addressed in our future studies.
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