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Abstract

This article concerns numerical simulations of unsteady natural
convection induced by constant cooling at the water surface of a
reservoir. Numerical computations reveal the occurrence of sinking
cold water plumes soon after the initiation of cooling. These sinking
plumes are responsible for an initial mixing over the local water depth,
resulting later in a distinct horizontal temperature gradient with the
water temperature decreasing toward the shallow region due to the
presence of a sloping boundary. Simulations also show that the rel-
atively higher cooling rate in the shallow water causes a cold water
current flowing downwards along the sloping bottom and penetrating
into the deeper regions. After a sufficient time a quasi-steady state
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is attained and at the end two main fluid layers are developed: a
relatively stable undercurrent, and a very unstable return flow just
below the water surface. Numerical results for different Grashof num-
bers are discussed. Understanding of the flow mechanisms pertinent
to this flow is important for predicting the transport of nutrients and
pollutants across the reservoir.
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1 Introduction

Diurnal heating and cooling of the side arms of lakes and reservoirs with gen-
tly sloping bottoms may result in large scale convective circulations. Typi-
cally, the input of solar radiation through the surface in the daytime results
in relatively warm shallow regions; conversely, night time cooling through
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the surface results in relatively cool shallow regions. The resulting horizon-
tal temperature gradients generate convective motions which influence the
transport of nutrients and pollutants between the near shore and central re-
gions of the water body, and therefore play a central role in the water quality.

Horsch and Stefan [1] investigated numerically and experimentally the
convective circulation in littoral waters due to surface cooling in a triangu-
lar enclosure. Their results illustrated the development of the flow includ-
ing the formation of sinking thermals and the establishment of a full cavity
scale circulation. Their work was later followed by Lei and Patterson [2],
who presented scaling analysis which revealed three laminar flow regimes,
namely conductive, transitional and convective regimes, depending on the
Rayleigh number. Their numerical simulations verified their scaling predic-
tions. Earlier the same authors [3] studied the effect of day-time heating
induced natural convection in a shallow wedge. Later, they investigated flow
responses to periodic heating and cooling in a reservoir [4]. The numerical
results showed a time lag in the response of the overall flow when thermal
forcing was switched between heating and cooling. This was consistent with
the field observations of Adams and Wells [5] and Monismith et al. [6], and
the analysis of Farrow and Patterson [7, 8]. They also concluded that during
both the cooling and heating phases thermal instabilities break the residual
circulation and reverse the flow in deep waters.

Most of the above mentioned works (except [4]) were confined to a tri-
angular cavity, which is a poor geometric representation of the real system.
The present article extends those works with a numerical simulation of an
extended system with the addition of an adjacent region of uniform water
depth, which is a more realistic model, under constant surface cooling.
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Figure 1: Schematic of the system considered.

2 Numerical model and procedures

Figure 1 shows the two dimensional reservoir model used in the numerical
simulations. It consists of two regions: a region with a sloping bottom, and
an adjacent region with an uniform water depth. The total length of the
model is L with a maximum depth H. The sloping bottom region ends at
x = Ls , and the parameter hx denotes the local water depth. The origin
of the coordinates is at the tip of the triangular region. The system is then
subjected to a constant, negative heat flux at the water surface, y = 0 . The
average water temperature in the system is therefore constantly decreasing
due to the heat loss through the surface.

The flow modes and temperature evolutions are governed by the usual
continuity (1), Navier–Stokes (2) and energy (3) equations. They are written
for an incompressible Newtonian fluid with the Boussinesq assumption:

∇ · ~u = 0 , (1)

D~u

Dt
= − 1

ρ0

∇p+ ν∇2~u+ gβ(T − T0)

(
0
1

)
, (2)

DT

Dt
= k∇2T , (3)

where ~u is the fluid velocity, t is the time, p is the pressure, T is the tempera-
ture, ρ0 the density at the reference temperature T0, k the thermal diffusivity,
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g the gravitational acceleration, β is the thermal expansion coefficient and
ν is the kinematic viscosity.

The boundary conditions are rigid, no-slip and adiabatic walls on the
bottom and deep end and stress free and iso flux at the water surface. Thus
for y = −Ax , 0 ≤ x ≤ Ls and y = −h , Ls ≤ x ≤ L ,

~u = 0 ,
∂T

∂~n
= 0 , (4)

where ~n is normal to the bottom surface. For y = 0 :

v = 0 ,
∂u

∂y
= 0 ,

∂T

∂y
= −H0

k
+ ε [random (0, 1)− 0.5]

H0

k
. (5)

Here, u and v are the horizontal and vertical components of velocity respec-
tively, random (0, 1) is a random number between 0 and 1 with non specific
time variation and computed for every grid point at the top surface boundary,
H0 = I0/ (ρ0Cp), I0 is the fixed surface heat flux, and Cp is the specific heat
at the reference temperature. The parameter ε specifies the intensity of the
random perturbation to the surface boundary condition which triggers any
instabilities. In these simulations ε = 2% . Initially, the water is stationary
(~u = 0), and isothermal (T = T0).

Equations (1)–(3) were numerically solved using the commercial finite
volume package fluent 6.2 [9]. Two dimensional, unsteady, second order,
time formulations were employed in all subsequent computations. Pressure-
velocity coupling was obtained using the simple method [10] with spatial
derivatives approximated using a second order, upwind scheme.

For easier characterization of the unsteady natural convection, four non-
dimensional parameters are defined. They quantify the important properties
of the fluid and the flow. These are the Prandtl number, the Grashof number,
the aspect ratio and the bottom slope:

Pr =
ν

k
, Gr =

gβH0h
4

ν2k
, A =

H

L
, As =

H

Ls

. (6)
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For all computed cases with water as a medium, the Prandtl number has
a constant value of 7.07. The numerical computations were carried out for
Grashof numbers Gr = 105, 106, 107, and 5× 107 to examine flow responses
with different strengths of the surface cooling. The aspect ratio in all cases
is fixed at A = 0.05 and the bottom slope at As = 0.1 . The horizontal
volumetric flow rate across a vertical sectional plane at a given x location is
defined as

Q(x) =
1

2

∫ 0

−hx

|u| dy . (7)

The averaged volumetric flow rate Qm is obtained by integrating these quan-
tities along the horizontal direction:

Qm =
1

L

∫ L

0

Q(x) dx =
1

2L

∫ L

0

∫ 0

−hx

|u| dy dx . (8)

In the above equations Q(x) and Qm are normalized using the scale k.

3 Results and discussion

The results of the numerical simulation are presented here. First, the aver-
aged horizontal volumetric flow rate Qm, which is a quantity of the greatest
interests in applications dealing with transport of nutrients and pollutants
in coastal waters, is presented for several Grashof numbers. Second, the flow
development at Gr = 107 is presented in detail. Finally, the quasi-steady
flows for three different Grashof numbers are compared with each other.

In all of the simulations, the reference temperature is set to T0 = 20◦C,
and the dimensions of the model are fixed at L = 2 m, Ls = 1 m and H =
0.1 m. These correspond to the values used in an experimental program,
which will be reported separately.

Before the computations were carried out, a grid dependency test was
conducted. The averaged volumetric flow rate Qm was compared for this
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Figure 2: Transient responses of the averaged volumetric flow rates at Gr =
5× 107, Pr = 7.07 and for three different mesh sizes: 861× 51, 431× 26 and
1291× 76 .

purpose. Three non-uniform meshes (431×26, 861×51 and 1291×76) were
constructed to examine the dependence of the numerical solutions on the
grid resolution for Gr = 5 × 107 and Pr = 7.07 . Figure 2 shows the tran-
sient response of the averaged volumetric flow rate obtained with the three
different meshes. Observe that the overall flow development is comprised
of three distinct stages, that is, an early stage with the volumetric flow rate
increasing steadily, a transitional stage with the volumetric flow rate continu-
ing to increase but subject to fluctuations, and a quasi-steady stage with the
volumetric flow rate fluctuating about a constant mean value. In the early
stage of the flow development, the three solutions with different meshes follow
nicely with each other. However, they start to diverge during the transitional
stage. Despite the fluctuations of the solutions about an approximately same
mean value at the quasi-steady stage, the occurrence of peaks and troughs
in the three solutions is arbitrary. The divergence of the numerical solutions
with different meshes at the transitional and quasi-steady stages is caused
by the flow instabilities, which is discussed later in this article. We show
later that the flow instabilities originate from the cooling layer underneath
the water surface and take the form of plunging thermals, which is arbitrary
in nature. This type of flow instabilities is extremely sensitive to the mesh
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Table 1: Mesh dependency test for Gr = 5× 107.
Mesh size Qm Max. variation
431×26 537.64
861×51 535.28 1.78%
1291×76 528.08

resolution. Since this study is concerned with understanding the overall flow
development rather than resolving the details of the flow instability, the time
averaged volumetric flow rate at the quasi-steady state is considered for com-
parison purpose. The calculated, time averaged, volumetric flow rates with
the three meshes are listed in Table 1. We understand that this quantity
is very sensitive to the time period over which the volumetric flow rate is
averaged. This factor may have directly contributed to the relatively large
variation of the solution with the finest mesh from the other two solutions.
Nevertheless, the variation of the calculated, time averaged, volumetric flow
rate between the two fine meshes is only less than 1.4%. In consideration of
the significant computing resources required for the finest mesh, the medium
mesh (861×51) is adopted for all subsequent computations. Similarly, a time
step test was carried out for the largest Grashof number case. Six different
time steps (t = 0.05, 0.1, 0.2, 0.5, 1.0, 2 s) were tested. Based on this test, a
time step of 0.2 s was adopted for all subsequent calculations.

3.1 Horizontal exchange flow rates

Figure 3 shows the time histories of the integrated volumetric flow rates at
Pr = 7.07 and Gr = 105, 106, 107 and 5 × 107 respectively. We see that the
intensity of the flow response increases with the Grashof number (stronger
cooling results in faster flow exchange and quicker initialization of the flow).
For lower Grashof numbers the flow responses appear to be smooth; how-
ever, at larger Grashof numbers the integral volumetric flow rates show clear
oscillatory behaviour (here strongest at Gr = 5× 107). The presence of this
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Figure 3: Transient responses of the averaged volumetric flow rates for
different Grashof numbers Gr = 105, 106, 107 and 5× 107.

oscillatory behaviour is discussed in the following section. We see from these
plots that there are three distinct stages of the flow development: an initial
stage, a transitional stage and a quasi steady stage. The first stage describes
the creation of the initial boundary layer (conductive effect). In the second
stage onset of initial instabilities occurs and a relatively stable undercurrent
and unstable thermals develop in the domain. The last stage represents a
fully developed convective circulation.

3.2 Flow structures

3.2.1 Initial stage flow at Gr = 107

Initially, the heat loss through the water surface creates a horizontal con-
ductive boundary layer just below the water surface as seen in Figure 4. In
this, and all subsequent figures, blue colour always represents relatively cold
regions and red colour relatively warmer water regions. As the article con-
siders general characteristics of the fluid flow in reservoir, the isotherms are
always scaled in a way to present clearly the flow evolution depending on the
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Figure 4: Isothermal contours at the initial stage of the flow development
(conductive effect) at Gr = 107, Pr = 7.07 and t = 120 s.

Grashof number. In the shallow region the isotherms are deformed in order to
satisfy the no-flux boundary condition on the sloping bottom and they curl
over to become perpendicular to the slope. This generates a temperature
gradient along the sloping bottom which is responsible for a later convec-
tive flow of relatively colder water down the slope into the deeper regions.
Further, the volumetric cooling rate decreases with increasing water depth
since the surface heat flux is constant. This further reinforces the convective
circulation.

3.2.2 Transitional stage flow at Gr = 107

Shortly after the initialization of the flow, sinking cold water plumes origi-
nating from the conductive surface layer are observed in Figure 5a. These are
due to the cooling of the water body from above which makes the fluid at the
surface more dense. When the cooling is strong enough the thermals start
to penetrate the local water depth. The plunging thermals are responsible
for the initial mixing of the fluid and their initial wavenumber depends on
the local rate of cooling. Those thermals located closer to the tip reach the
slopping bottom sooner, and, through the enhanced mixing, accelerate the
development of the convective circulation in the system.

With increasing time the plumes described above tend to merge together,
creating larger structures. They penetrate the local water depth carrying
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Figure 5: Isothermal contours at the transitional stage at Gr = 107, Pr =
7.07 and a) t = 220 s; b) t = 400 s; c) t = 1200 s;.

relatively colder fluid toward the bottom, where they are prone to overturn-
ing, and mixing with ambient fluid as seen in Figure 5b. During this pro-
cess, plunging thermals continuously change their forms. They often appear
straight, but sometimes are curved with no apparent regularity and pattern
of movement. Thermals sinking in the shallow region cool that area faster
and a cold undercurrent is created gradually on the slope. That undercurrent
slowly proceeds towards the deeper region, being constantly fed by a return
flow of cold water along the surface. As seen in Figure 5c the undercurrent
reaches the end of the sloping region. At this moment it is possible to observe
three main regions of the flow: the undercurrent on the sloping bottom, a
surface return flow which is moving under the water surface toward the shal-
low end, and the deep region with large sinking plumes. The thermals above
the slope are becoming weaker and deformed by the undercurrent.
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Figure 6: Isothermal contours at Gr = 107, Pr = 7.07 and t = 8000 s.

3.2.3 Quasi-steady stage flow at Gr = 107

After some time, the undercurrent reaches the vertical adiabatic wall and
a quasi-steady state is attained. The average temperature of the entire do-
main is still constantly decreasing; however, the averaged horizontal flow
rate is almost constant. Figure 6 shows isotherms at the quasi-steady state
(t = 8000s). The relatively stable undercurrent is easily observed along the
bottom. The return flow, unlike the undercurrent, is very unstable as the
surface is being continuously cooled. Sinking plumes burst periodically from
the return flow below the water surface.

3.2.4 Dependence on the Grashof number

Figure 7 shows isothermal contours in the quasi-steady stage for three dif-
ferent cooling rates: Gr = 105, 106 and 5× 107. Although the times selected
for presenting the data are different, the flows are at comparable stages of
development. Of particular interest is a comparison of the undercurrent and
the surface return flow in each case. When the cooling rate is low (Gr = 105,
106), the undercurrent layer is thicker and more stable. The return flow is
constantly disturbed by sinking plumes, but the influence of the plumes on
the undercurrent is relatively weak. However, in Figure 7c (Gr = 5 × 107)
the undercurrent is noticeably disturbed by the thermals coming from the
above and the undercurrent separates from the bottom in a complex interac-
tion with the plumes. However, the flow maintains the general characteristic
of having two convective layers. The disturbances in the form of sinking
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Figure 7: Isothermal contours in quasi-steady state at Pr = 7.07 and a)
Gr = 105, t = 83880 s; b) Gr = 106, t = 20000 s and c) Gr = 5 × 107,
t = 4100 s.

plumes create strong oscillatory behaviour of the integrated flow rates, as
seen in Figure 3.

4 Summary

This article describes a numerical investigation of the flow in shallow waters
with a gently sloping bottom subject to constant cooling at the water sur-
face. An understanding of the mechanisms of such exchange flows is central
to modelling the transport of nutrients and pollutants in lakes and reser-
voirs. The mechanisms for the creation of the horizontal thermal boundary
layer and the formation of the sinking plumes are described. The detailed
flow development is presented for Gr = 107. We have shown that two main
distinct layers developing in the resulting convective circulation; an undercur-
rent along the bottom and an unstable return flow under the water surface.
The stability of the return flow strongly depends on the cooling rate.
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The unsteady flow structures obtained in the present numerical simula-
tions were also observed in our recent experimental investigation [11]. The
experimental results clearly showed different stages of the flow development
similar to those presented above. Both experimental and numerical results
indicate that the convective motions in reservoirs induced by night-time cool-
ing have a significant impact on water quality and transport of nutrients and
pollutants.
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