
ANZIAM J. 55 (EMAC2013) pp.C329–C347, 2014 C329

Determining the form of ordinary differential
equations using model inversion
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Abstract

The model inversion approximation extracts parameters from within
a nonlinear function so that they are exposed in a linear position
convenient for further analysis. Experimental data can then be used
to examine how the parameters vary with operating conditions. In
particular, linear regression provides the selection and evaluation of
the nonzero elements in linear relations between the parameters and
the operating conditions. Where data is generated from an ordinary
differential equation, this model inversion is used to investigate certain
properties of the ode equations, such as the reliance of ode terms on
external conditions, and the form of nonlinear relations of the state
variables.
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1 Introduction

Ordinary differential equations (odes) are often used to describe physical
systems where the coefficients in the model change with external conditions
that are held constant for each test case. For instance, the growth of a plant
can be described by an ordinary differential equation, and the rate coefficients
in this equation vary with external conditions such as temperature, fertiliser,
and atmosphere content. The model inversion approximation (Whiten, 1994,
2013) provides a method that converts these coefficient relations into a linear
location so that efficient linear regression techniques can be used to analyse
the form of these relations.
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Grey box models, which have part of the model form specified and require
data to complete the model, are usually handled using a combination of
nonlinear least squares (Press et al, 2007, Sec. 15.5) with some method of
evaluating alternatives such as enumeration, a genetic algorithm, or synthetic
annealing (Bohlin, 2006; Ter Braak, 2006). Kojovic and Whiten (Kojovic, 1989;
Kojovic & Whiten, 1994) automated techniques that fitted the parameters
using individual data sets and then looked for parameter relations between
the different data sets.

The model inversion technique (Whiten, 1994, 2013) provides an alternative
method of efficiently developing grey box models. One potential application
of this technique is using experimental data to determine unknown parts of
the ordinary differential equations describing the data.

Consider an ode of the form

dx(t)
dt

= g[x(t), t,p(c)] , (1)

where the sizes of the vector functions x, g, p, and the vector c are determined
by the problem being considered. The function g is assumed known, and
function p(c) is unknown and assumed to be of the form Ac with A unknown,
and c is known operating conditions for the ode. Data values of x(t) for
given values of c recorded from a system modelled by equation (1) are used
to determine the value of A. Section 2 describes the method of converting
the nonlinear problem into an approximate linear problem in the elements
of A, and Section 3 considers the regression methods needed to calculate and
select the nonzero elements of A.

Section 4 uses data consisting of values of x(t) for a range of t values generated
using six different values of the vector c, to demonstrate determining the
location and values of the nonzero elements of A. This example also shows
how the ode initial conditions are calculated using parameters from p(c).
In Section 5 values in A are used to select from different proposed nonlinear
terms of x(t). The data used to determine A as in Section 4 is a time sequence
of the two dimensional function x(t).
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2 Model inversion

The model inversion approximation (Whiten, 1994, 2013) uses an approximate
value of unknown parameters functions within a function to derive a formula
that moves the parameter functions p(c) from inside the main function f [p(c)]
to a linear position:

f(p(c)) ≈
[
f(p0) −

∂f(p0)
∂pT0

p0

]
+
∂f(p0)
∂pT0

p(c)

=

[
f(p0) −

∂f(p0)
∂pT0

p0

]
+
∂f(p0)
∂pT0

Ac . (2)

This is a general relation so the lengths of the vector functions f and p and the
vector c are determined by the problem being considered. The dimensions of
the matrix A must be compatible with vectors p and c. The approximation (2)
is easily derived by substituting p(c) = p0 + δp , expanding as a series,
eliminating δp, replacing p(c) by Ac, and separating the known terms from
the terms containing the unknown matrix A. This creates an offset from f(p0)
so that the nonzero values in A can be selected and determined by linear
regression methods. Transformations of elements of c are introduced into Ac
to provide for nonlinear relations within p(c). The derivative ∂f(p0)/∂pT0
is the Jacobian of f(p) evaluated at p0 . The approximation (2) is applied
repeatedly, first calculating A then using p = Ac , to give an improved value
of p0 .

3 Regression

The advantage of approximation (2) is, given the estimate p0 and values of c,
it provides a linear expression for the elements of A. Thus, given data sets
of operating conditions c∗i and resulting measured function values f∗i , the
error between model predictions and the data f∗i is a linear function of the
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elements in A:
fi(Ac∗i ) − f∗i ≈ bi − Bia , (3)

where, comparing with approximation (2),

bi = fi(p0) −
∂fi(p0)
∂pT0

p0 , Bi = kron
(
c∗Ti ,

∂fi(p0)
∂pT0

)
, a = vec(A) , (4)

where kron(·, ·) is the Kronecker matrix product (Johnson & Horn, 1991,
chap. 4), and vec(·) puts columns of A into a single column vector. Whiten
(1994, 2013) gives expanded versions of this conversion to a linear form. After
an initial iteration the values of p0 will depend on the data set i, estimated
from the product of values of A from a previous iteration and c∗i . Note that
it is not necessary that the function fi(Ac∗i ) be the same for each data set,
hence the subscript on f .

Efficient linear regression techniques are available to locate the zero values
in a and evaluate the remaining values. As we may be investigating a large
number of possible elements in a, this regression may be singular or near
singular and thus a regularised minimising of the linear approximation is
required.

3.1 Linear regularisation

Regularisation of the minimisation of |[bi−Bia]|2 is done by biasing the solution
to be close to a vector a0 by minimising the sum of |λ(a−a0)|2 and |[bi−Bia]|2 .
After each iteration the value of a0 is updated to the just calculated value of a,
and, as shown in Appendix A, descent directions are available, so a0 moves
progressively closer to a minimum of |[bi − Bia]|2 . This gives the following
terms to be minimised as a sum of squares[

B

λI

]
a −

[
b
λa0

]
, (5)
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where B = [Bi] , b = [bi] and λ is chosen to approximately minimise |[fi(Ac∗i )−
f∗i ]|2 . Similar to the Levenberg–Marquardt algorithm (Press et al, 2007,
p. 801), for the first iteration λ is set to 0.001 and then λ is progressively
increased by factors of ten until the sum of squares |[fi(Ac∗i )− f∗i ]|2 is reduced
and then starts to increase. At the start of each following iteration with the
updated value for a0 , λ is decreased by a factor of one hundred.

Differentiating the sum of squares of the terms (5) with respect to a and
setting to zero to get the condition for the minimum gives

(BTB+ λ2I)a = BTb + λ2a0 . (6)

Then, using the singular value decomposition B = UDVT where UTU = I ,
D is diagonal and VTV = VVT = I , gives

V(D2 + λ2I)VTa = V(DUTb + λ2VTa0) . (7)

Solving for a gives

a = V(D2 + λ2I)−1(DUTb + λ2VTa0) , (8)

and as D is diagonal, values of a are easily obtained for different values of λ,
and these are all descent directions from a0 . Also, even in the nonlinear case
a sufficiently large value of λ will reduce the value of the sum of squares unless
it is already at the minimum (see Appendix A). Thus, unless we are at the
solution, the sum of squared errors can be reduced and usually convergence
is not dependent on the initial value of a0 . After each iteration a0 is updated
to the calculated value of a and new values of B and b are calculated, so that
each step is towards a minimum of |[fi(Ac∗i ) − f∗i ]|2 .

3.2 Term selection

Given a+δa = VD−1UT(b+δb) where δa is the random variation in a and δb
the random variation in b, from equation (8), after setting λ to zero as at
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the solution after iterating a0 = a , we obtain

δa = VD−1UTδb =Mδb . (9)

The covariance of δa is

covar(δa) = varm(δa δaT) =M varm(δb δbT)MT =MMT var(δb) (10)

where var(·) is the variance, varm(X) is the matrix of the variances of the
elements of matrix X, and it is assumed that the elements of δb have equal
variances and are uncorrelated. Then the standard error of a is

se(a) =
√

diag(MM ′) sd(δb) =
√

diag(MM ′) sd(b − Ba) , (11)

where sd(·) is the standard deviation. Elements of a less than a small
multiple of their standard error are progressively be set to zero, thus removing
insignificant terms from the matrix A.

4 Example: ODE rates and initial conditions

This example demonstrates how unknown rate parameters and initial condi-
tions relations within an ode are determined from experimental data. For
this example the function f(p) = f(Ac) is a vector of x(t) and y(t) functions
of p at selected times, defined by the two dimensional set of odes given
in Section 4.2, while the data sets f∗i are generated using the same selected
times and six different values of ci from the differential equations given in
Section 4.1.
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Figure 1: Simulated experimental data using equations (12) and (13) (circles),
and fit to the data (lines).

4.1 Data generation

Sample data was generated for t = 0, 1, . . . , 10 from

dx

dt
= 1+ (−1+ 0.5c2)x+ 0.1c3y , (12)

dy

dt
= (1+ c2 + c3) + (1+ c2 + c3)x+ (−2+ c3)y , (13)
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with x(0) = c3 , y(0) = c2 , and six sets of the three element vector c, where
the first element is one, equal to the columns of the matrix

C =

1.0 1.0 1.0 1.0 1.0 1.0
0.5 1.0 0.0 1.0 −1.0 0.0
0.5 0.0 1.0 1.0 0.0 −1.0

 . (14)

Gaussian random values N(0, 0.1) were added to the generated values. The
six sets of data are shown in Figure 1. Although these equations could be
solved analytically, a numerical integrator, the fourth order Runge–Kutta
rk4 (Henrici, 1964; Press et al, 2007), is used to solve them, as a numerical
solution is more typical of potential applications.

4.2 Equation fitted

To fit the data x(ti) and y(ti) for ti = 0, 1, . . . , 10 generated according to
Section 4.1, we use, with the given c values,

dx

dt
= p1 + p2x+ p3y , x(0) = p7 ,

dy

dt
= p4 + p5x+ p6y , y(0) = p8 ,

(15)
where p = Ac and A is an unknown eight by three matrix to be determined.
The vector p = Ac takes six different values with c coming from the the
columns of C in equation (14). Again the fourth order Runge–Kutta rk4
is used. Fixed steps are used so that reliable numerical derivatives are
calculated for approximation (2). Initially A is set to zero. From A = 0 it
took 14 iterations for the relative change in the sum of squares of the residue
to be less than 10−10, and another six iterations to select the nonzero terms.
The standard error of the residuals is 0.101, which agrees closely with the
random error with standard deviation 0.1 added during the data generation.

The original matrix A = AOrig used in equations (12) and (13), and the
calculated A = ACalc found using (15) and the techniques in Sections 2 and 3,
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are

AOrig =



1.0 0 0

−1.0 0.5 0

0 0 0.1
1.0 1.0 1.0
1.0 1.0 1.0

−2.0 0 1.0
0 0 1.0
0 1.0 0


, ACalc =



1.083 0 0

−1.081 0.531 0

0 0 0.107
0.786 0.776 1.128
1.017 1.009 0.992

−1.853 0 0.877
0 0 1.017
0 1.070 0


. (16)

The solid lines in Figure 1 are calculated using ACalc and equations (15). A
closer match to the original A values is obtained if more data is used or less
random variation is introduced.

5 Example: A nonlinear ODE

This example demonstrates how unknown functions of state variables are
determined. Data values for f∗1 (this example has only one data set) are
generated for t = 0, 0.1, . . . , 4.9, 5 from
dx

dt
= 5− g(x) + y , x(0) = 0 ,

dy

dt
= 4+ x− g(y) , y(0) = 0 , (17)

where g(x) is a natural cubic spline, which is cubic polynomial sections and
straight line ends joined with continuous first and second derivatives (de Boor,
2001), passing through the points

x 0.0 1.0 2.0 3.0 4.0
g(x) 0.0 2.6875 5.0 6.6875 8.0
g ′(x) 2.75 2.5625 2.0 1.4375 1.25

and is shown in Figure 2. Small Gausian random values N(0, 10−5) were
added to the data points generated. Figure 3 shows the points generated and
used for fitting in the next section.
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Figure 2: Relation used for g(x) in equation (17).

5.1 Function fitted

Similar to Section 4, f(Ac) is a vector of function values consisting of
x(t) and y(t) from equation (18) with t = 0, 0.1, . . . , 4.9, 5 . Four unknown
functions, Sxx(x), Sxy(y), Syx(x) and Syy(y), defined using cubic spline func-
tions (piecewise cubics with smooth joins) (de Boor, 2001) are used to define
unknown coefficients in p (in this case c is one and p = A where A is 18× 1):

dx

dt
= p1−Sxx(x)+Sxy(y) ,

dy

dt
= p10+Syx(x)−Syy(y) , x(0) = y(0) = 0 .

(18)
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Figure 3: Data values generated by equations (17) (circles) and fitted function
(lines).

The four spline functions are

Sxx(x) = p2x+ p3s1(x) + p4s2(x) + p5s3(x) , (19)
Sxy(y) = p6y+ p7s1(y) + p8s2(y) + p9s3(y) , (20)
Syx(x) = p11x+ p12s1(x) + p13s2(x) + p14s3(x) , (21)
Syy(y) = p15y+ p16s1(y) + p17s2(y) + p18s3(y) , (22)

which pass through (0, 0) and have a linear component and three local B-
spline components, s1 , s2 and s3 , shown in Figure 4. Table 1 gives the points
defining these three B-splines. The B-splines are a special case of natural
cubic spline functions.
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Table 1: Join points and derivatives for the B-spline components.
x 0.0 1.0 2.0 3.0 4.0

s1(x) 0.0 1.0 0.25 0.0 0.0
s ′1(x) 1.5 0.0 −0.75 0.0 0.0
s2(x) 0.0 0.25 1.0 0.25 0.0
s ′2(x) 0.0 0.75 0.0 −0.75 0.0
s3(x) 0.0 0.0 0.25 1.0 0.0
s ′3(x) 0.0 0.0 0.75 0.0 −1.5

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

s(
x)

Figure 4: The three B-splines, s1(x), s2(x), s3(x), used as the basis for the
nonlinear terms in equations (18).
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Figure 5: Fitted functions used in equation (18).

Applying the methods in Sections 2 and 3 gives the fit shown in Figure 3, using
the four spline functions shown in Figure 5. The method correctly identifies
the functions in equation (17) as the two nonlinear functions and the two linear
components. Starting with A = 0 this case took 13 iterations to converge and
another three iterations to select the nonzero terms. The standard deviation
of the residuals was 0.989× 10−5, close to the 1× 10−5 standard deviation
of the random variation added in the generation of the data. Table 2 gives
the fitted A = p values. These are all very close to the expected values, and
round to the expected values when restricted to two decimal places, with the
largest difference being less than 3× 10−3.
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Table 2: Parameters p which are coefficients for fitted terms in equations (18)
and (19)–(22).

Variable Constant Slope s1 s2 s3
dx/dt 5.0000 Sxx 2.0008 0.5000 0.7499 0.5000

Sxy 1.0009 0 0 0

dy/dt 3.9999 Syx 1.0023 0 0 0

Syy 2.0026 0.5000 0.7501 0.5001

6 Conclusions

Models, including those based on differential equations, can be inverted so
that parameter relations inside the model are exposed in a linear position for
efficient analysis. The parameters p being investigated must have fixed values
during integration, but can be related to external operating conditions ci
that vary in different data sets. Multiple data sets generated with different
operating condition values are combined into an analysis that minimises errors
in the original measurements. Nonlinear relations can be included, as in linear
regression, by including transforms of the operating conditions.

By dividing functions of state variables into a sum of basis functions, unknown
functions of the state variables are determined from experimental data. Spline
functions provide a convenient basis for this analysis. Given sufficient data
the coefficients of the basis functions can be linear functions of operating
conditions, as in the first example.

Although the minimisation is usually quite robust with zero often being an
adequate start value, insufficient data or data with a too large a random
component can result in multiple solutions, particularly from the selection
of the zero terms in A, and it may be necessary to try multiple initial
approximations.

For the application to a new situation, it is not possible to make general
statements recommending the amount, range or accuracy of data that would
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be needed to obtain a specified model accuracy, other than the obvious,
more is better. As in other cases of experimental design, a simulation of the
data generation, similar to that done in Sections 4 and 5, and analysis is
recommended. By testing a range of scenarios such as varying the amount
of data, range of operating conditions, size of errors in the data, and model
forms, it is then possible to estimate what experimental data would be needed
to provide the required accuracy.

The criteria for selection or rejection of regression terms needs to be set
carefully. Correlated variables can be selected if present individually, but if
both are included, then they can both be rejected. Also, if there are a large
number of alternatives, then a larger rejection criteria may be needed to avoid
including irrelevant variables.
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A Appendix

To show equation (8) generates descent directions for the sum of squares |Ba−
b|2 around the point a0 from the difference a − a0 , use equation (6),

a − a0 = (BTB+ λ2I)−1(BTb + λ2a0) − a0
= (BTB+ λ2I)−1BT(b − Ba0)

= (BTB+ λ2I)−1BTb∗ , (23)

where b∗ = b − Ba0 and thus b∗Tb∗ is the sum of squared residuals at a0 .
Substituting a = a0+x into the sum of squares |Ba−b|2 and then substituting
x = α(BTB+ λ2I)−1BTb∗ gives

|Ba − b|2 = (Bx − b∗)T(Bx − b∗)

= (αB(BTB+ λ2I)−1BTb∗ − b∗)T(αB(BTB+ λ2I)−1BTb∗ − b∗)

= α2b∗TB(BTB+ λ2I)−1BTB(BTB+ λ2I)−1BTb∗

− 2αb∗TB(BTB+ λ2I)−1BTb∗ + b∗Tb∗ . (24)

Now, as (BTB+ λ2I) is positive definite,

b∗TB(BTB+ λ2I)−1BTb∗ (25)

http://dx.doi.org/10.1145/192527.192535
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/6125
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/6125
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is positive provided
BTb∗ = BT(b − Ba0) (26)

is not zero. The above is only zero if a0 gives the minimum of |Ba − b|2 .
Provided a0 is not the minimum, and α is sufficiently small, the sum of
squares (24) is reduced, thus equation (8) defines a descent direction from a0 .

Similarly, provided the nonlinear terms [fi(Ac∗i ) − f∗i ] are smooth with most
terms non-constant, locally linear and rounding errors are not significant, a
sufficiently large value of λ will reduce the sum of squares |[fi(Ac∗i ) − f∗i ]|2 .

For the linear case, minimising |Bx − b|2 with respect to x subject to the
constraint |x−a∗|2 = r2 using λ2 as the Lagrange multiplier, gives the solution
x = a with a defined by equation (8), showing this solution is the minimum
on the constraint circle |x − a∗|2 = |a − a∗|2 .
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