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Accurate temporal resolution of harmonic
content in both amplitude and phase
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Abstract

Frequency content of a periodic signal is easily computed using fast
Fourier transforms (fft). While the magnitude is well predicted, phase
information is usually meaningless and temporal changes are difficult to
resolve accurately over short time periods, even with techniques such as
discrete time Fourier transforms or wavelets. These problems arise in
the analysis of musical sounds and should be solvable since a well trained
human ear can detect subtle and rapid changes to timbre and pitch
that occur with expressiveness, techniques such as ‘vibrato’, and lack
of tone control exhibited by music students. Starting with the premise
that a musical sound is truly periodic, we obtain much more accurate
information from a Fourier series than from a Fourier transform. In this
article the Fourier series of a periodic signal is evaluated using a least
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squares fit, as was done before the popularisation of the fft algorithm,
but the difference is that the frequency is precisely defined before fitting
the coefficients, which succeeds with as few as three or four cycles. The
proposed technique achieves the above objectives and opens up the
possibility of exploring the role of phase in the quantification of musical
sound, a critical component that is traditionally ignored.
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1 Introduction

The objectives of this study are to accurately quantify musical timbre in
terms of both amplitude and phase of the harmonic content; to detect subtle
but rapid changes in loudness, pitch and timbre that may arise from the
use of techniques such as ‘vibrato’, expressiveness or simply lack of technical
control of the sound; and to resolve and quantify rapid sequences of notes.

This problem originated from the idea of quantifying an ‘ideal’ sound produced
by professional musicians for use as a pedagogical tool. Gaskell [3] studied
the sound produced by flautists, with subjects divided into three categories
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(professional or semi-professional, advanced student and beginner student)
with the aim of identifying features that consistently differ between the sounds
produced by professional musicians and those produced by students at various
levels. In this study the signals were processed using fast Fourier transforms
(fft) and timbre was quantified purely in terms of energy content in the
different harmonics.

Gaskell succeeded in identifying clear difference between his subject groups,
but several of the objectives above were not achievable using conventional
tools such as fft, wavelets or discrete-time Fourier transforms (dtft) for
reasons described in Section 2. A method proposed in Section 3 overcomes
these limitations. We see in Section 4 that harmonic amplitudes can vary
as much or more due to player, pitch and loudness as they can from one
musical instrument to another. However, a trained musician is easily capable
of identifying the instrument being played, as well as the quality of timbre,
pitch, vibrato, etc. Therefore I hypothesise that the phase of the harmonic
content of a musical note is at least as important as amplitude, and that
analysis techniques exist that can quantify it accurately.

2 The problem (an example)

Consider the signal y(t) in Figure 1(a) (which we revisit in Section 3),
containing 4096 samples of the signal at the standard audio sampling rate of
44.1 kHz1. The pitch is C4 (‘middle C’), nominally 262Hz (based on equal
tempered A440 tuning). The total duration is approximately 93ms and
contains 24 highly regular ‘cycles’ (as would be expected for a musical note
from a defined pitch instrument). It is typical of the signals to be analysed
(although significantly longer than often desired).

1This is effectively the instantaneous sound pressure at the microphone. Units are
arbitrary since the signal y(t) (which is in the range 0–1) depends on the microphone
sensitivity and amplifier gain.
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Figure 1: (a) C4 (nom. 262Hz) played mezzo forte by professional flautist;
(b) 24 cycles of (a) overlaid onto one period (blue) with a perfectly periodic
‘reconstructed’ signal (red) added; (c) amplitude spectrum of reconstructed
signal in (b), the continuous line is the Fourier transform of y(t) and the points
are the coefficients of the Fourier series; (d) phase spectrum of reconstructed
signal in (b).
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Figure 1(b) shows an equivalent signal reconstructed from Figure 1(a) using
the procedure that is outlined in Section 3 (hence it is perfectly periodic). The
Fourier series coefficients for this signal are the blue + in Figures 1(c) and (d),
while the Fourier transform (specifically the fft) evaluated over the 4096 sam-
ples are the green lines.

The Fourier series and Fourier transform should of course be identical if
the sample is of infinite length (since the reconstructed signal is perfectly
periodic), or exactly an integer number of periods. However, in practice this
will not be the case because

• real signals are always of finite length (and usually quite short);

• the sample period does not in general divide evenly into the signal
period; and

• real signals will change with time, so even if they are long we must
analyse short segments to obtain the desired information.

The fft gives a reasonable approximation to the amplitude spectrum for the
higher harmonics; however

• the frequencies computed by the fft are limited to discrete values that
will not in general coincide with the true frequency, in this example the
resolution is about ±2%, at least an order of magnitude short of the
accuracy useful for the musical applications mentioned above;

• the amplitudes of the first four harmonics (the most critical ones) are
in error by up to 30%;

• there is no meaningful information at all in the phase spectrum (and a
real signal is much worse), in particular the are abrupt phase shifts at
the component frequencies and the true phase value could be any point
on a near-vertical line.

Similar problems exist with other traditional techniques. They always fall
well short of achieving the objectives desired by this study.
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3 Procedure

Historically, Fourier series were often computed by fitting the sine and cosine
coefficients by least squares [1] prior to the rapid growth in popularity of the
fft algorithm in the decades immediately following publication of Cooley and
Tukey’s seminal paper [2]. A return to the older least squares method proves
to be the key to exploiting the unique properties of the present problem to
achieve the objectives stated in Section 1. However, I emphasise that the
modern techniques will still be preferred for most other applications, especially
in identifying weak signals in noisy or random data, and I do not wish to
undervalue their importance.

In the present work the least squares approach described by Chatfield [1]
is improved upon by exploiting the knowledge that musical sounds from a
definite pitch sustaining instrument very closely approximate being truly
periodic over short periods of time. Therefore, the method is extended by
accurately defining the fundamental period before fitting the coefficients, and
by not constraining the period to bear any relation to the sample rate. The
accurate determination of the fundamental frequency is absolutely critical to
the success of the method, otherwise results are little, if any, better than fft.
Accurate determination of the fundamental frequency also means that the
coefficients need only be fitted for arbitrarily few (or many) integer multiples
of the fundamental frequency without any loss of accuracy, so only a small
number of coefficients generally need to be computed to produce useful,
accurate and meaningful results.

To accurately define the frequency the signal is smoothed, zero crossings are
identified (sometimes a trigger other than zero may be more effective) and
a linear fit is applied to the time versus crossing count relation. Using only
every second zero crossing has two advantages: the slope of the linear fit
line is the period (or an integer multiple), and it avoids inaccuracy where
the upward and downward zero crossings are not equally spaced and an odd
number of points is identified. The computed period is then compared with
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any good estimate of the expected period (which usually need only be ±25%)
to correct for the case where the predicted frequency is an integer multiple
of the true fundamental frequency (i.e., where there are strong harmonics,
hence more than two zero crossings per period—Figure 1(b) is such a case).

The accurate period identification method may fail if the signal is so noisy
that the number of zero crossings differs from one period to another, or if
the sound is unmusical (e.g., not of definite pitch). For example, Figure 5,
discussed more fully below, shows some deviations from the expected regular
stepwise monotonically increasing frequencies of a typical musical scale. This
is most likely due to ‘key slap’ or other noise associated with the flute’s
mechanism. Such frequency misdiagnosis is minimised by experimenting with
the amount and type of smoothing, the trigger threshold, and the length
of the analysis window. For musical sounds the frequency misdiagnosis will
be confined to individual data points, which will usually be identifiable as
outliers.

Once the period T is accurately known, coefficients Ci are fitted in the least
squares sense to

yj =

M∑
k=1

[Ck cos(kωtj) + CM+k sin(kωtj)] , (1)

where yj is the jth sample taken at corresponding time tj and ω = 2π/T is
the fundamental angular frequency. The number of computed harmonicsM is
chosen arbitrarily (subject to having sufficient samples, which in practice will
never be problematic since typically only the first few harmonics are desired)
and does not affect the values of the fitted coefficients. The coefficient fitting
is performed almost trivially using the Matlab code

k = (1:M);
C = lsqlin([cos(2*pi*k*t/T)’ sin(2*pi*k*t/T)’],y);

where t and y contain all the tj and yj values. The code puts Ck and CM+k

end to end into a single vector C(1:2*M).
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To extract the phase, rewrite (1) as

yj =

M∑
k=1

Ak cos [k(ωtj − φk) − φ0] , (2)

where φ0 is chosen such that φ1 = 0 , thus the phase φk of the harmonics are
expressed relative to the phase of the fundamental φ0 . The following Matlab
code evaluates the phase of each harmonic:

Z = C(k) - i*C(M+k);
phi0 = imag(log(Z(1)));
Z0 = Z.*exp(-i*phi0*k);
phase = imag(log(Z0));

4 Applications

Figures 2, 3 and 4 show the technique described in Section 3 applied to four
different versions of the musical note G4 (nominally 392Hz) using an analysis
window of 15ms (about 4.9 cycles). The top two examples in each of these
figures illustrate the difference between a professional player and beginner
student. In particular, they show the consistency and degree of control with
which a professional can sustain a sound over a duration of 2 s.

Figure 3 clearly shows the professional flautist’s sound to have relatively much
stronger, higher harmonics. The instrument is possibly slightly ‘overblown’,
as evident from the high second harmonic sounding an octave above the
fundamental. However, the ear still picks up the fundamental frequency in
spite of its low energy but perceives it as having a richer and more carrying
sound. This much could have been deduced using ffts, but it is in Figures 2
and 4 where only the present method is able to show accurately the rapid
variation of the signals in time, and the lack of control in the student’s sound
compared to the professional flautist’s is clearly evident. Figures 2 shows how
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Figure 2: Time variation of amplitude and frequency for the note G4 (392Hz)
(analysis window 15ms). Top left: professional flautist, no vibrato; right:
beginner flute student, no vibrato. Bottom left: semi-professional flautist
with vibrato; right: semi-professional violist with vibrato.
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Figure 3: Time variation of relative amplitude of harmonics (normalised
on the sum of squares of harmonic components) for the note G4 (392Hz)
(analysis window 15ms). Top left: professional flautist, no vibrato; right:
beginner flute student, no vibrato. Bottom left: semi-professional flautist
with vibrato; right: semi-professional violist with vibrato.
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Figure 4: Time variation of relative phase of harmonics for the note G4
(392Hz) (analysis window 15ms). Top left: professional flautist, no vibrato;
right: beginner flute student, no vibrato. Bottom left: semi-professional
flautist with vibrato; right: semi-professional violist with vibrato.
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the professional player is able to maintain a constant pitch as the sound gets
louder, while student’s pitch is clearly correlated with the loudness, showing
how it is affected by poor breath control. Figure 4 shows how the student’s
poor sound control is illustrated by substantial random variation of the phase
spectrum with time, which is not nearly so clearly evident in the amplitude
spectrum (Figure 3).

The third and fourth examples in each of Figures 2, 3 and 4 illustrate the use
of an expressive technique called ‘vibrato’, in which the musician modulates
the amplitude and/or frequency of the note at about 5–6Hz, producing a
‘wobbly’ sound—typically the frequency (pitch) modulation is more obvious
to the listener than the amplitude modulation. These figures compare the
vibrato on two different instruments, a flute and viola. Again, fft would not
be able to resolve the frequency accurately enough to meaningfully quantify
the vibrato given the short analysis windows required by the closeness of
the modulation and carrier frequencies (less than two orders of magnitude
difference).

Figure 2 shows some interesting differences between the two instruments.
Apart from the slightly different modulation frequencies (about 5Hz for the
flute and 6Hz for the viola) we see that the viola has relatively more pitch
variation and the flute relatively more amplitude modulation. This is not
surprising considering the method of vibrato production—breath control for
the flute, and left (fingering) hand oscillations for the viola. We also see
sharper troughs for the flute and sharper peaks for the viola.

A peripheral observation from Figure 3 is that there is nothing at all about
the amplitude spectrum for the viola that distinguishes it from that of the
three flute samples, primarily because of the significant variations between the
latter. I hypothesise that there is key information in the phase spectrum that
can be used to define a characteristic sound for, or to distinguish between,
various musical instruments. The phase spectra (Figure 4) shows the flute to
be considerably more consistent than the viola, although careful observation
shows that the second, third and fourth harmonics for the viola are better
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Figure 5: E[ major scale played on flute, semiquavers at approximately
132 beats per minute (analysis window 15ms).

correlated with each other than with the fundamental—this could perhaps
indicate that the overtones of the viola’s sound are not perfectly harmonic, and
could be one such characteristic point of difference between these instruments.

As a final illustration, Figure 5 shows how pitch is detected for a very fast
scale played on the flute. The frequency range is 311–1245Hz, and there are
approximately nine changes of note per second. At the lower frequencies of
this example the analysis window contains only 4.7 vibration cycles. Some
challenges with pitch detection are evident (possibly noise from key slap)
but mostly the pitches are clearly identified with sufficient accuracy to give
helpful feedback to the player about tuning etc.
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5 Conclusions

The proposed method

• accurately defines both phase and amplitude of harmonics that make
up musical notes;

• works on very short analysis windows containing as few as four peri-
odic cycles of data, and of arbitrary length (e.g., not constrained to
2N samples), so quantifies variations of timbre and pitch with sufficient
accuracy to study vibrato, consistency of tone production, etc;

• is robust to noise, provided the correct fundamental frequency is identi-
fied; and

• is performed rapidly with no loss of accuracy if arbitrarily few coefficients
are computed.
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