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Abstract

The K-complex is a transient electroencephalogram (eeg, brain
activity) waveform that contributes to sleep stage scoring. An auto-
mated detection of K-complexes is an important component of sleep
stage monitoring. This automation is difficult due to the stochastic
nature of brain signals, presence of noise, complexity, and extreme
size of data. We develop an optimization model, based on solving a
sequence of linear least squares problems, to extract key features of eeg
signals. The proposed approach significantly reduces the dimension
of the problem and the computational time while the classification
accuracy is enhanced in most cases. Numerical results show that this
procedure is efficient in detecting K-complexes.
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1 Introduction

Currently there are an alarming number of people suffering from sleep disor-
ders. The diagnosis of such disorders is performed in a polysomnogram (psg)
test. psg studies a series of biomedical signals such as brain activity (eeg),
muscle movements, heart beat and eye movement. The analysis of eeg, in
particular for sleep stage identification, is an active research area in biomedical
signal processing.

K-complexes are specific eeg waveforms [6]. They consist of an initial small
negative, somewhat sharp wave, followed by a large positive wave. Figure 1
presents a K-complex in an eeg signal, where the amplitude increases sharply
and then returns to the original value. Since eeg signals are non-linear,
non-stationary and not repeatable, K-complexes have a wide variety of shapes
and are difficult to distinguish from other eeg waves. The usual method for
sleep stage identification is visual (manual) inspection of an eeg signal by a
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Figure 1: The growth of the amplitude in the presence of K-complexes.

sleep specialist. However, the visual scoring of whole night eeg recordings is
a time consuming task.

eeg recordings show that human sleep is categorized into two stages, rapid
eye movement (rem) sleep and non-rem (nrem) sleep. Typically, people
begin the sleep cycle with a period of nrem sleep followed by a very short
period of rem sleep. The American Academy of Sleep Medicine (aasm)
divides nrem into three further stages [8].

nrem stage 1 is the transition from waking to sleep.

nrem stage 2 is signaled by K-complexes in the eeg.

nrem stage 3 is called slow-wave-sleep (sws) or delta sleep. It is the
deepest stage of sleep in which the sleeper is least responsive to the
environment [8].
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A patient’s sleep cycle begins with nrem stage 1, followed by nrem stage 2
and then nrem stage 3; after nrem stage 3, the patient returns to nrem
stage 2 and then enters rem sleep. Qualified doctors manually analyze
the relevant biomedical signals. The sleep stage scoring is based on the
standardized scoring Rechtschaffen and Kales (R&K) rules [10]. K-complexes
are defined by this set of rules. One of the major deficiencies of these rules
is arbitrarily defined thresholds for sleep stage identification [12]. This can
lead to unreliable results and poor agreement between scorers. While a few
studies were carried out to automate the detection of K-complexes based
on artificial neural networks [9], wavelet transforms [14], matched filters [13]
and an electronic system using filters, pulsers, and threshold detectors [5], no
standard algorithm is accepted by the medical community. Medical doctors
report that the accuracy of K-complex detection is not satisfactory as it
remains subjective [1, 8]. Therefore, an accurate method for automatic
detection of K-complexes is very desirable. This automation would reduce
the number of manual tasks significantly, thereby making the process more
reliable and cost efficient.

We propose a new algorithm based on an optimization model for the automatic
detection of K-complexes. This consists of two major steps. First, we extract
essential features from a single eeg signal and reduce the dimensionality of the
data. Our feature extraction procedure is based on optimization. Second, we
apply classification algorithms to evaluate the accuracy of eeg classifications
(K-complex detection).

The main contribution of this work is the development of the feature extrac-
tion procedure, which is based on a careful choice of the class of functions
that model the amplitude efficiently. These functions have two important
properties. First, they approximate the shape of the actual amplitude func-
tions. Second, the corresponding optimization problems are able to be solved
accurately and inexpensively. Section 3 presents our proposed procedure for
K-complex detection as preprocessing and a feature extraction procedure. We
approximate the brain signal (eeg) by a sinusoidal curve (approximate wave
or model wave) with the amplitude approximated by a piecewise polynomial
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function. Then we minimize the sum of the squares of the deviations between
the original signal and the fitted wave (modeling function). After extracting
the essential features, classification algorithms are applied over the obtained
set of features to enhance their classification accuracy. Results of numerical
experiments are presented in Section 4.

2 Data acquisition

There are several difficulties in the development of efficient methods for
K-complex detection. One difficulty is data availability since the scoring
of K-complexes is not normally kept in psg analysis records. Therefore,
we requested that medical practitioners prepare the data for this research.
Another difficulty is that the same segment of data may be scored differently by
different scorers [8]. In our experiments, we use data scored at Tenon Hospital
in Paris.

In this study each observation contains a 10 second segment of an eeg
recording at a sampling frequency of 100Hz. Each data segment consists
of a sequence of (ti,yi) , i = 1, 2, . . . , 1000 , where yi is the eeg voltage
recorded at time ti . A dataset with 39 non-K-complexes and 31 K-complexes
(70 observations) is used.

3 Preprocessing and features extraction

Many signals are modeled as a sine wave A(t) sin[ω(t)t+τ(t)] , where A(t) is
the amplitude, ω(t) is the frequency and τ(t) is the shift (phase). The choice
of these three functions is important. Consider

min
A,ω,τ

N∑
i=1

{yi −A(t) sin[ω(t)t+ τ(t)]}
2 , (1)
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where yi , i = 1, . . . ,N are the eeg recordings at time ti , with N the total
number of recordings. For modeling any kind of signal it is reasonable
to consider all A(t), ω(t) and τ(t) as functions of time t; however, the
corresponding optimization problem may become too complex. Therefore,
our goal is to find a suitable equilibrium, where the corresponding functions
are:

• precise enough to describe the signal and produce high accuracy classi-
fication; and

• simple enough to be solved accurately and inexpensively on a pc used
in a medical lab.

Since one of the main characteristics of K-complexes is a sudden increase
in signal amplitude, we model the amplitude as a piecewise polynomial
function (spline function). Spline functions are suitable to describe such
abrupt amplitude changes and therefore it is very natural to use them in
amplitude modeling. Section 3.1 shows that the corresponding optimization
problems are relatively inexpensive to solve.

There are many ways to construct polynomial splines. One possibility is
through a truncated power function:

Sm(x ,θ , t) = x0 +
m∑
j=1

x1jt
j +

n∑
l=2

m∑
j=1

xlj(t− θl−1)
j
+ , (2)

where m is the degree, n is the number of intervals in a 10 seconds duration
of an eeg, θ = (θ1, . . . , θn−1) are the knots, x0, x11, . . . , xnm are the spline
parameters and

(t− θl−1)+ = max[0, (t− θl−1)] =

{
t− θl−1 if t > θl−1 ,
0 if t 6 θl−1 ,

is the truncated power function. The spline knots can be free or fixed. If
the knots are chosen to be free, then they are additional variables in the
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optimization problem. Thus, x = (x0, x11, . . . , xnm,θ) and the corresponding
optimization problem becomes more complex; moreover, it becomes non-
convex. Generally, it is much easier to solve a higher dimension fixed knots
problem than a free knots problem. To specify the amplitude approximated
by a polynomial spline, its parameters and knots (if they are free) must be
determined.

Assume that the range of possible frequencies and phases form a fine grid
which is precise enough for the purposes of this problem and not very large
(details are in Section 3.1). In this case, for each possible combination of
ω and τ values, the only function we need to approximate is the amplitude.
The amplitude is modeled as a polynomial spline whose knots are fixed and
the parameters are to be optimized. Then, the optimization problem is

min
x

N∑
i=1

{yi − Sm(x,θ, ti) sin(ωti + τ)}2 . (3)

This is a linear least squares problem and therefore the solution of the original
optimization problem (1) is reduced to solving a sequence of linear least
squares problems (llsps) when ω and τ are constants (on the grid, and we
keep the best combination).

Equation (3) is rewritten as

min
x

N∑
i=1

(yi −Mx)
2 or min

x
‖Mx− yi‖22 , (4)

where yi are the recorded signals, x ∈ Rmn+1 and M is a matrix with
mn + 1 columns and N rows of the form Sm(θ, ti) sin(ωti + τ) . If M ∈
RN×(mn+1) is a full rank matrix, then the llsp is solved through the system
of normal equations. There exist various methods for solving llsp based on
normal equations [4], qr decomposition [15] and singular value decomposi-
tion (svd) [3]. Solving the system of normal equations (MTM)x =MTb is
the most common method when the matrixMTM is known to be nonsingular
and well conditioned [2].
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3.1 Numerical experiments

In our experiments we model the amplitude function as a spline function of
degree four (m = 4) with fixed knots (n = 5):

S4 = x0 + x11t+ x12t
2 + x13t

3 + x14t
4 +

5∑
l=2

4∑
j=1

xlj(t− θl−1)
j
+ ,

with the vector optimization variable

x = (x0, x11, x12, x13, x14, x21, x22, x23, x24, . . . , x51, x52, x53, x54) .

In all our experiments M is a full-rank matrix. It is possible to show that for
this particular application and dataset this will always be the case, although
we will not present the proof here. The proof relies on the K-complex almost
never lasting less than 1 second, and thus n 6 10 , m 6 5 and ω = 20Hz
are demonstrated through the direct study of the structure of matrix M.
Therefore, our experiments (n = 5 and m = 4) did not encounter any
singularity.

The knots were chosen to be equidistant. The frequency grid was specified
between 0.1Hz and 15Hz with the step size of 1Hz (for eeg analysis, medical
doctors almost never consider frequencies above 20Hz). Interval [0,π] with
the step size π/4 was assigned to τ.

In the case of S4 , the dimension of x is 21 (mn+1 = 21 ,m = 4 , n = 5). Also,
three more parameters which characterize the improvement of the objective
function after linear least squares optimization are considered. These three
parameters are the value of the objective function, ω and τ. Therefore,
N = 1000 features of the original data are reduced to 24 essential features.
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3.2 Classifiers

We used 12 classifiers (classification algorithms) from Weka [16] (open source
data analysis software). We only provide a very short description of the
classifiers used in this study, more detail is provided by Weka [16].

oner a classifier that uses the minimum error attribute for prediction, dis-
cretizing numeric attributes.

reptree a fast decision tree learner. It builds a decision/regression tree using
information gain/variance and prunes it using reduced-error pruning.

lmt a logistic model tree based approach, with logistic regression functions
at the leaves.

libsvm integrated software for support vector machine (svm) classification.

smo a sequential minimal optimization algorithm for training a support
vector classifier (a special case of libsvm).

J48 a classifier based on a C4.51 decision tree.

rbf a classifier that implements a normalized Gaussian radial basis function
network, using the K-means clustering algorithm to provide the basis
functions.

kstar an instance-based classifier.

lwl a locally weighted learning classifier that uses an instance based algo-
rithm to assign instance weights.

lazyibk a K-nearest neighbors classifier.

Logistic a generalized linear model used for binomial regression.

All these classifiers were used with their default sets of parameters except
lazyibk, which was used with K = 1, 5 . As a training set we used a dataset

1C4.5 is an algorithm in Weka to generate a decision tree or it is a decision tree classifier.
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with 30 non-K-complexes and 21 K-complexes (51 observations) and a dataset
with 9 non-K-complexes and 10 K-complexes (19 observations) was used as a
test set. Each of the 12 classifiers were trained on the training set and tested
on the test set. The accuracy on the test set is reported.

4 Results and discussion

Figure 1 illustrates the approximation curve and original eeg signal. The
approximation amplitude is considerably larger at the K-complex. Although
the approximation does not follow precisely the trend of original data, it
is sufficient to detect the K-complex and therefore to produce the correct
classification results. The computational time to extract key features of the
eeg is roughly 21 seconds on a pc with 3.10GHz cpu and 8GB of memory.

First, the classifiers were used over the original dataset with 1000 features.
Then all the above classifiers were applied to the obtained set of features
(obtained after linear least squares preprocessing). All classification accuracy
results are presented in Table 1. It is seen that Logistic does not produce any
result on the original dataset. This is most probably due to the large size of
the data (1000 features). The accuracy of all classifiers except libsvm and
rbf was considerably improved by using the data with extracted features
rather than the original dataset. Although the rbf classifier provides better
accuracy on the original dataset than after preprocessing, no classification
method failed on the preprocessed data (the set of features obtained through
llsp). The most accurate classifiers were Logistic, lmt and J48 with an
accuracy of 74%. The accuracy of most of the classification methods from
Weka [16] were considerably improved after llsp. Our experiments show
that llsp is an appropriate and successful feature extractor for classifying a
K-complex in an eeg.
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Table 1: Classification accuracy on the test set for (a) the original dataset;
and (b) the preprocessed dataset.

Classifier Test set accuracy (a) Test set accuracy (b)
oner 37% 47%
reptree 37% 47%
lmt 42% 74%
libsvm 47% 47%
smo 47% 63%
J48 47% 74%
rbf 74% 53%
kstar 47% 58%
lwl 47% 53%
lazyib5 53% 58%
lazyib1 53% 63%
Logistic N/A 74%

5 Conclusion

A new optimization-based procedure for detecting K-complexes in an eeg
signal is proposed. The proposed procedure works well on the available data,
but the shortage of freely available datasets prevents us from testing our
method on larger datasets and comparing with other researchers’ approaches.
Our new procedure has two advantages. Firstly, llsp-based preprocessing
allows one to reduce the size of a classification problem and extract the key
features of an eeg signal. Secondly, the accuracy of all of the classification
algorithms fromWeka [16] except libsvm and rbf were considerably improved
after the preprocessing.

Although our optimization based approach performed well, there are several
avenues for future work. One of the main problems is the singularity of
matrix M. Due to round-off errors [7], matrix M might be close to singular.
In this case, rigorous techniques, in particular, qr decomposition and singular
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value decomposition (svd) can be investigated to get more accurate results. In
future work we will also provide a formal study on the values of the parameters
(n, m, ω), when the corresponding matrixM is full-rank. Another important
direction is to develop more efficient ways to obtain these parameters, for
example, a Fourier transform in combination with a ‘branch and cut’-based
procedure [11].
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