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Applying Bayesian networks and belief
propagation to error correction coding
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Abstract

Telecommunication standards utilise numerous different subsystems
to improve the quality of voice and data communications. One of
these subsystems is tasked with error detection and control within the
transmitted streams. This is accomplished using numerous different
error correction codes for various scenarios. This article investigates
the use of a Bayesian network as a universal channel decoder for the
two main branches of algebraic codes. This graph-based approach is
visually intuitive and is found to produce similar results to the best
performing decoders in use today. A graphical representation of a
multi-path channel equaliser is incorporated into the Bayesian network,
obtaining near optimal performance.
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1 Introduction

Digital communications standards that are in use today, such as 3G and 4G,
build on decades of research and incorporate sophisticated transmitter and
receiver protocols [9]. New innovative space-time modulation and encoding
techniques utilising antenna arrays all have the same goals: to improve the
quality of the transmitted and received signal, to provide better quality of
service and to reduce required transmission power to prolong battery life [9].
These space-time modulation and encoding techniques are implemented using
digital electronics hardware at the device level, and the complexity of the
algorithms increased significantly over the last decade. Thus there is a need for
more intuitive approaches to model encoding, modulation and the subsequent
decoding of linear block error correction codes.
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In this article we revisit the probabilistic graphical model known as a Bayesian
network (bn) to represent the coded information bits and their conditional
probabilities given noisy observed data [4]. It is a common scenario in a
wireless communication system that there are multiple paths (known as taps)
for a signal to travel between transmitter and receiver. Each tap results in a
different propagation time and if not rectified by an effective equaliser, the
constructive and destructive interference of the received signals leads to a
greatly increased chance of detection error. We propose an intuitive graphical
representation of the channel to allow for joint equalisation and decoding via
the belief propagation (bp) algorithm.

The bn provides a reduced probability of error for an incorrect decision at the
receiver, when compared to the case where the channel equaliser and decoder
are used independently. The intuitive approach of the bn allows the method
to be applied to several different applications and fields of research where
unobservable parameters need to be estimated, given noisy observational data.
The graphical approach is straightforward to understand and to visualise, yet it
is shown to result in equivalent numerical calculations and performance when
compared to existing algorithms that are applied in high speed communication
systems.

To illustrate the versatility of the bn the graph-based approach is applied
as a universal channel decoding method and is tested on two main types of
algebraic codes (convolutional and low density parity check (ldpc) codes).
Results indicate performance similar to other applicable methods, but with
advantages in the ability to visualise, understand and compute via a graphical
model. An important and practical case is the application of the ldpc codes
over a multi-path (dispersive) channel. We show that our graph approach is
able to incorporate the multi-path elegantly, without affecting the parity check
functions of the code, and jointly decode and equalise effectively using bp.
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2 Algebraic codes

A (n,k) linear block code (lbc) encodes a message m of k bits into a
codeword c of n bits, n > k , with a corresponding code rate of R = k

n
. The

encoding process is expressed as a multiplication with a (k × n) generator
matrix G:

c = mG . (1)

The parity check matrix H is used to decode the codeword and is orthogonal
to the generator matrix,

GHT = 0 . (2)

ldpc codes are a subclass of lbc. These codes are characterised by a sparse
parity check matrix that is optimised for probabilistic graph based decoding
techniques [3]. By employing bp on a Tanner graph, the ldpc codes achieve
error correction performance near channel capacity.

Convolutional codes are another subclass of algebraic codes that encode the
message m through discrete convolution with a finite impulse response filter.
The encoder is represented by a banded generator matrix allowing the code to
be treated as if it were a lbc. Convolutional codes are optimally decoded using
the Viterbi algorithm [10], which employs a maximum likelihood approach to
track the most probable path through a trellis diagram.

3 Bayesian networks

A bn is a probabilistic directed graphical model that represents dependencies
among variables. It simplifies the representation of a domain by factorising the
joint probability function into independent conditional probability functions
(cpfs) that capture the interactions between each variable Xi and the set of
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variables Si that influence Xi directly. This is expressed by

Pr(X1, . . . ,XN) =
N∏
i=1

Pr(Xi | Si) , (3)

where N is the number of variables and Si ⊂ {Xk}
k=N
k=1 \Xi [6].

The bp algorithm is a common method to efficiently compute posterior
probability distributions for all unobservable variables given the observed
variables in a probabilistic graphical model [7]. bp is a message passing
algorithm capable of performing exact inference in probabilistic graphical
models that are free from loops. In this context a loop is defined as an
undirected cycle in the underlying graph structure. In the loop free case the
algorithm is guaranteed to reach an exact solution in time proportional to the
diameter of the network [6]. The algorithm is also applied to graphs containing
loops, where it approximates the posterior distribution. Repeated iterations,
under certain conditions, result in the posterior distributions converging to
the correct values; however, convergence is not guaranteed.

Consider a discrete variable node X that takes some value x. Let the be-
lief Pr(X | e) of node X be the probability distribution of X given all evidence e
provided by observations of other variables within the network. For a network
containing no undirected loops this belief decomposes into two components.
Let the evidence contained in the network above and below X be defined as
e+X and e−X , respectively. The belief of node X is thus

Pr(X | e) = αPr(X | e+X )Pr(e
−
X | X) , (4)

where α denotes a scaling factor used in the algorithm to ensure the probabil-
ities for a given node sum to unity.

Let node X possess a set of n parent nodes U = {U1, . . . ,Un} , and m child
nodes Y = {Y1, . . . , Ym} . The evidence contained within the network is further
subdivided into

e+X = {e+U1X
, . . . , e+UnX

} , e−X = {e−XY1 , . . . , e
−
XYm

} , (5)
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where e+UiX
denotes evidence contained within the network connected to and

including the parent node Ui and e−YjX denotes evidence contained with the
network connected to and including the child node Yj . Given this subdivision,

Pr(e−X | X) =

m∏
j=1

Pr(e−YjX | X) . (6)

In the message passing scheme the distribution Pr(e−XYj | X) is a message sent
from child node Yj to X. The distribution over parent nodes is computed by
marginalisation over the set U:

Pr(X | e+X ) =
∑
U

Pr(X | U)

n∏
i=1

Pr(Ui | e+UiX
) , (7)

where Pr(X | U) is the cpf for node X and the distribution Pr(Ui | e+UiX
) is

the message that X receives from a parent node Ui . The summation over the
set U requires summation over every combination of variables within the set.

The messages are computed as described by Pearl [7] using

Pr(X | e+XYj) = α
[∏
k 6=j

Pr(e−YkX | X)
]∑

U

Pr(X | U)
∏
i

Pr(Ui | e+UiX
) , (8)

Pr(e−XUi
| Ui) = β

∑
X

Pr(e−X | X)
∑
Uk,k 6=i

Pr(X | U)
∏
k 6=i

Pr(Uk | e+UkX
) , (9)

where α ensures that the probability distribution across X sums to unity, β is
an arbitrary constant.

4 Modelling a communication system with a
Bayesian network

McEliece et al. [4] showed that bn can be used to compactly describe proba-
bilistic decoders. They also showed that when the belief propagation algorithm



4 Modelling a communication system with a Bayesian network C102

is applied to these networks the resulting decoder exhibits good error correc-
tion properties. This section presents simple decoder networks and the next
section illustrates how this is extended to multi-path channel models.

The purpose of any communication receiver is to estimate the transmitted
message given some noisy received signal. Digital communication requires an
estimation of a set of unobservable (hidden) message symbols, M, given a set
of noisy observations, Z. The estimate of message bitMi given an observation
Zi = zi is

m̂i = argmax
Mi

{
Pr(Mi)Pr(zi |Mi)

Pr(zi)

}
. (10)

To model an additive white Gaussian noise (awgn) channel, the cpf for
each observation node Zi is a Gaussian function with a mean determined
by the corresponding transmitted bit Mi , and a variance σ2 determined
by the channel noise. The line coding function L(x) defines the binary
phase shift keying modulation used within the communication system, where
L : [0, 1]→ [+1,−1] , which produces the cpf

Pr(zi | mi) =
1

σ
√
2π

exp
{
−
[zi − L(mi)]

2

2σ2

}
. (11)

Upon instantiation of an observation node for a given bn, the channel model
maps the received value into a probability that is propagated throughout the
network.

Equation (1) is modelled in a bn with the inclusion of an additional layer
of hidden codeword symbols. The connection between the message symbols
and the codeword symbols is characterised by the G matrix where nonzero
entries indicates a directed connection. The cpf for the codeword nodes is
deterministic and represents the modulo-2 multiplication of all parent variables.
The bp algorithm on this network yields the posterior distributions for every
message node with respect to the channel observations, code constraints and
prior distributions. An example network for a rate 1

2
convolutional code is

shown in Figure 1.
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m1 m2 m3

c1 c3 c5c2 c4 c6

z1 z3 z5z2 z4 z6

m4

c7 c8

z7 z8

Figure 1: bn for rate 1
2
convolutional code

Figure 1 shows how information from any channel observation nodes may
indirectly influence the belief of any message symbol node by propagation
through the network. In this case, odd numbered code symbol nodes simply
copy the values of their single parents. They are only included for clarity and
are not required.

5 Inclusion of multi-path channel models

This section shows how more complex channel models are included in a bn
representation of a communication system. Consider a multi-path channel
characterised by a discrete impulse response (ir) with L-taps:

H(n) = α0δ(n) + · · ·+ αL−1δ[n− (L− 1)] ,

where δ is the Kronecker delta function and αl is the amplitude of the lth tap.
These channel properties are included in the channel layer in much the same
way as a convolutional encoder. Inclusion of a multi-path channel model allows
for simultaneous equalisation and decoding known as turbo-equalisation.

Each channel observation node zi is connected to L previous codeword
nodes ci, . . . , ci−(L−1) , as shown in Figure 2(a). This results in a directed edge
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Figure 2: Multi-path channel models in bns for (a) observation node for
L-tap channel model; and (b) (8, 4) ldpc code with 2-tap multi-path channel
model.

creating short loops within the network, as depicted in Figure 2(b). The cpf
of the observation nodes becomes a Gaussian function with the mean deter-
mined by the sum of the previously transmitted bits weighted by the channel
ir. The complexity of marginalisation over the cpf increases exponentially
with the number of taps. For this reason only the most significant taps should
be included [1]. Although the inclusion of a multi-path channel introduces
many short loops to the network, Myburgh et al. [5] showed that the bp
algorithm will converge provided the primary tap is sufficiently dominant. By
applying a minimum phase pre-filter to the received channel observations it
is possible to enforce this constraint. By including a model of the channel
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Figure 3: Comparison of ber for a L = 1 , k = 1 , n = 2 convolutional code
(following the notation of Proakis et al. [8]) of length 2× 103 decoded using
bn decoder with conventional Viterbi decoder.

directly in the decoder network it becomes capable of turbo-equalisation [2].

6 Results

A convolutional decoder was implemented as described in Section 4 and was
tested by simulating transmission over an awgn channel. Each point on
the curve was generated by simulating transmission until 1000 errors were
accumulated. The number of errors is divided by the number of total bits
transmitted to obtain the bit error rate (ber). As the convolutional code
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Figure 4: Comparison of ber for a j = 3 , k = 6 ldpc code (following the
notation of Gallager [3]) of length 2×103 using equalisation techniques across
multi-path channel.
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network is free from loops, the bp algorithm is converges to exact results in
time proportional to the diameter of the network. The ber performance of the
bn decoder is verified by comparison with a conventional Viterbi decoder [8],
as shown in Figure 3.

A second experiment was conducted to test the turbo-equalisation performance
of the bn in a multi-path channel. Simulations were conducted for the following
cases:

• ldpc code in an awgn channel;

• ldpc code in an multi-path channel;

• sequential equalisation and ldpc decoding in multi-path channel with
soft values passed between stages;

• turbo-equalisation of ldpc code in multi-path channel.

In each case a randomly generated regular ldpc code was used and in the
multi-path channel cases a model with relative tap weights of [1, 0.1] was
used. Again 1000 errors were simulated for each point.

Figure 4 shows that in the sequential equalisation and decoding cases the
equaliser exhibits little ability to recover errors due to the multi-path and
hinders the decoder at higher signal quality. The same equalisation and
decoding elements combined on the same bn shows a performance that
approaches that of the awgn only channel.

7 Conclusion

The graph-based algorithm is a visually intuitive approach to assist in un-
derstanding the interactions among the unobservable parameters that need
to be estimated and the observable data. The use of a bn as a universal
channel decoder was explored and we found it produced similar results to
two popular decoding algorithms used in telecommunications, namely the
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decoding of convolutional codes and ldpc codes. The bn was also deployed
as a turbo-equaliser to mitigate the effects of multi-path propagation. The
graph produced near optimal results if the majority of the power is contained
in the primary tap [5]. We conclude that a bn can be used successfully as
a universal channel decoding method, provided a graph can be defined to
describe the connections within the code.
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