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Formation of the three-dimensional geometry
of the red blood cell membrane
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Abstract

Red blood cells (rbcs) are nonnucleated liquid capsules, enclosed
in deformable viscoelastic membranes with complex three dimensional
geometrical structures. Generally, rbc membranes are highly incom-
pressible and resistant to areal changes. However, rbc membranes
show a planar shear deformation and out of plane bending deformation.
The behaviour of rbcs in blood vessels is investigated using numerical
models. All the characteristics of rbc membranes should be addressed
to develop a more accurate and stable model. This article presents an
effective methodology to model the three dimensional geometry of the
rbc membrane with the aid of commercial software comsol Multi-
physics 4.2a and Fortran programming. Initially, a mesh is generated

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/7820
gives this article, c© Austral. Mathematical Soc. 2014. Published May 7, 2014, as part
of the Proceedings of the 11th Biennial Engineering Mathematics and Applications
Conference. issn 1446-8735. (Print two pages per sheet of paper.) Copies of this article
must not be made otherwise available on the internet; instead link directly to this url for
this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/7820


Contents C81

for a sphere using the comsol Multiphysics software to represent the
rbc membrane. The elastic energy of the membrane is considered
to determine a stable membrane shape. Then, the actual biconcave
shape of the membrane is obtained based on the principle of virtual
work, when the total energy is minimised. The geometry of the rbc
membrane could be used with meshfree particle methods to simulate
motion and deformation of rbcs in micro-capillaries.
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1 Introduction

Bone marrow produces the red blood cells (rbcs) of the blood. rbcs eject
their nuclei in the early stages of maturity [1]. Healthy matured human rbcs
have a discoidal biconcave shape (see Figures 7 and 8) and they contain a
viscous fluid called cytoplasm. The cytoplasm is rich in haemoglobin, which
carries and delivers oxygen to the different tissues of the body. The discoidal
biconcave shape of the rbcs provides a high surface to volume ratio. This
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high surface to volume ratio aids to increase the efficiency of oxygen diffusion
through the rbc membrane. The viscoelastic membrane of the rbc consists
of a lipid bilayer, and is supported by a mesh-like cytoskeleton. The mesh-like
cytoskeleton is formed by a network of spectrin proteins linked by short
filaments of actin [2, 3]. Due to this complex three dimensional geometric
structure, rbcs exhibit various types of motions and deformed shapes when
they flow within the cardiovascular system.

Over the last few decades, a number of numerical models were proposed to
explain and predict rbc behaviour in the microvessels [4]. However, most
of the models were two dimensional and were unable to capture the three
dimensional nature of rbc motion and deformation. In recent years, particle
methods were used to model rbc behaviour in microvessels [5, 6, 7], since
the motion, deformation and the fluid structure interacion of rbcs are easily
modelled. In reality, the motion and deformation of the rbcs are highly three
dimensional, as they exhibit three dimensional deformations in microvessels [8].
Therefore, simplified two dimensional models are not enough to capture the
actual behaviour of rbcs in microvessels.

This study presents an effective methodology to form the three dimensional
geometry of the rbc membrane with the aid of commercial software comsol
Multiphysics 4.2a and Fortran programming. Initially, a mesh is generated
for a sphere using the comsol Multiphysics software, as shown in Figure 1,
to represent the rbc membrane before ejecting the nucleus. Then, the energy
functions related to in-plane deformation, bending and area are applied to the
membrane particles with a penalty function to represent the volume constraint.
The forces acting on each membrane particle are then calculated based on
the principle of virtual work, and they are formulated using a Fortran code.
Energy curves show that the rbc membrane energy is minimised when it has
the discoidal biconcave shape. This rbc membrane geometry could be used
with meshfree particle methods to simulation of the motion and deformation
of a rbc in micro-capillaries.
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Figure 1: Mesh generated by comsol Multiphysics software.

2 Methodology

The rbc membrane is represented by a spring network [9]. Initially, it is
assumed that the shape of the rbc membrane is spherical with a radius
of 3.27µm. A spherical geometry is built by comsol Multiphysics 4.2a
software, using the “surface” option for the object type. Then, a user controlled
mesh is generated for the spherical surface with the same minimum and
maximum element sizes (0.5µm), to ensure the size and shape of the triangles
remain as similar as possible (see Figure 1). Finally, the mesh is exported as
a “.mphtxt” file to obtain the node coordinates and the node numbers. The
exported mesh file shows that the spherical surface is divided into 774 mesh
points, or nodes, and 1544 elements. The coordinates of the 774 nodes and
the node numbers, which generate the 1544 triangular elements, are extracted
for further processing with a Fortran code. Particles with finite masses are
placed on each node.
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2.1 In-plane deformation

The rbc membrane shows in-plane deformation when the membrane is
subjected to an external force field. To represent the in-plane deformation
(planar shear), elastic springs S are used to interconnect the particle on each
node, which generate the triangular elements of the mesh. The length changes
in these springs change the stored energy

ES =
1

2
KS

NS∑
n=1

(Ln − Ln0)
2 , (1)

where KS is the spring constant for stretching/compression and NS is the
number of springs, while Ln and Ln0 are the deformed length and the reference
length of the nth spring, respectively. The reference length is set to the
initial length, when the springs are at rest. Assume that the ith particle is
connected to six neighbouring particles by six elastic springs as in Figure 2.
The forces (ith) acting on the ith particle due to any change in the length of
the springs are calculated on the basis of the principle of virtual work:

Fi,S = −KS
∂

2∂ri

6∑
n=1

(Ln − Ln0)
2 , (2)

where ri is the position vector of the ith particle. The force component in the
x direction, acting on the ith particle due to the change in the length of the
S1 spring is Fi,S1,x and it is a function of the coordinates of the ith particle:

Fi,S1,x = −KS(LS1 − LS10)
xi − x1

LS1
. (3)

2.2 Bending deformation

The rbc membrane seeks to minimise the bending energy to obtain a stable
shape, so that the membrane is locally flat. The elastic bending energy stored
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Figure 2: Particle (node) locations on the rbc membrane.
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in the rbc membrane due to the bending is

EB =
1

2
KB

NB∑
n=1

Ln tan2(θn − θn0) , (4)

where θn is the angle between two normal vectors of neighbouring triangles
formed by elastic springs for stretching/compression and θn0 is the reference
angle between the above two triangles without deformation (see Figure 3).
Also, Ln is the length of the common side of the two triangles and KB is the
spring constant for bending. The number of neighbouring triangles is NB and
is equal to the number of elastic springs used to represent the stretching/
compression forces. Here, θn0 is set to zero and equation (4) is rewritten as

EB =
1

2
KB

NB∑
n=1

Ln
1− n̂ijk · n̂ilj
1+ n̂ijk · n̂ilj

, (5)

where n̂ijk and n̂ilj are the unit normal vectors for two neighbouring triangles
4IJK and 4JIL, respectively, as shown in Figure 3. The force acting on the
ith particle due to the bending deformation is

Fi,B = −KB
∂

2∂ri

NB∑
n=1

Ln
1− n̂ijk · n̂ilj
1+ n̂ijk · n̂ilj

. (6)

2.3 Area incompressibility

The number of lipids per area of the rbc membrane is constant and the
rbc membrane shows a high resistance to changes in surface area. The
elastic energy generated by the rbc membrane due to a change in total rbc
membrane area from reference area A0 to A is

EA =
1

2
KAA0

(
A−A0
A0

)2
, (7)
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Figure 3: Angle between two neighbouring triangles.

where KA is the area expansion moduli for the whole membrane.

Further, local area incompressibility should be considered and the energy
generation due to the changes in the local area of the triangles An, formed
by elastic springs for stretching/compression is

Ea =
1

2
KaAn0

Na∑
n=1

(
An −An0
An0

)2
, (8)

where An0 is the reference value for the initial local area of the triangle and
Ka is the area expansion moduli for the triangular element. The force acting
on the ith particle due to the local area incompressibility and the total area
incompressibility (Fi,a and Fi,A, respectively) are calculated based on the
principle of virtual work:

Fi = −
∂E

∂ri
. (9)
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Figure 4: The rbc is divided into triangular prisms to calculate its volume.

2.4 Volume constraint

The total volume V enclosed by the rbc membrane is equal to the volume
of a healthy matured rbc. The energy generation, due to the change in the
total enclosed volume is

EV =
1

2
KVV0

(
V − V0
V0

)2
, (10)

where V0 is the reference volume and KV is the penalty coefficient [9] to
maintain the V as V0. To calculate the total volume of the rbc, the rbc
membrane is divided into triangular oblique prisms as shown in Figure 4.
The volumes of the prisms are individually calculated, and then the sum is
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taken. Assume that the particles I(xI,yI, zI) , J(xJ,yJ, zJ) and K(xK,yK, zK)
generate the triangle IJK. The projected area vector Ap of the IJK triangle
on the xy plane is equal to the area of the I ′J ′K ′ triangle (see Figure 4), and
is proportional to the cross product of the two vectors I′J′ and J′K′:

Ap =

(
I′J′ × J′K′

2

)
. (11)

To calculate the projected area, the counter-clockwise orientation of the three
triangle points and the real value of the cross product are used. Thus, the
error due to the orientation is omitted. Then the volume of the prism is

Vp =

(
I′J′ × J′K′

2

)
·
(
zI + zJ + zK

3

)
. (12)

The force acting on the ith particle due to the volume constraint (Fi,V) is
calculated on the basis of principle of virtual work (see equation (9)).

2.5 Equation of motion

The total force acting on the ith particle is the sum of all above mentioned
forces:

Fi = Fi,S + Fi,B + Fi,A + Fi,a + Fi,V . (13)

The mass of each particle is 5µg and the time step is 1×10−5 s over a temporal
domain of 250 s. A Fortran 90 computer code calculated the forces acting on
the rbc membrane particles and Intel Visual Fortran Composer xe compiled
the code. Results are analysed using Tecplot 360 software. The velocity and
the position of each particle are updated by using the acceleration r̈ , which
is related to the total force by

Fi = mr̈. (14)

Other parameters are given in Table 1.
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Table 1: Simulation parameters.
Parameter KS(N/m) KB(N) KA(N/m) Ka(N/m) KV(N/m

2)
Value 1× 10−6 1× 10−11 5× 10−3 5× 10−5 2× 100
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Figure 5: Variation of total forces.
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Figure 6: Variation of energy.

Initially, the rbc membrane experiences very high forces, then gradually the
total resultant force acting on the membrane decreases (see Figure 5). After
200 s, the forces acting on the membrane become stable and do not show any
variation with time. The variation of the energy with time exhibits similar
behaviour, as shown in Figure 6. The typical biconcave discoidal shape of a
matured healthy rbc is obtained at t = 200 s (see Figure 7). Since the energy
and forces do not change with time after t = 200 s, the rbc membrane does
not show any shape change. Therefore, after t = 200 s, the rbc membrane
has reached a stable shape. This biconcave discoidal shape matches with
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Figure 7: Final shape of the rbc membrane.

Figure 8: Cross sectional area of the final shape the rbc membrane.
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scanning electron microscope images of rbcs [10]. A cross section of the final
three dimensional shape of the rbc membrane gives the two dimensional
biconcave shape of the rbc and its aspect ratio is close to the aspect ratio [11]
of an average healthy rbc (see Figure 8).

3 Conclusions

This is an effective methodology to model the three dimensional geometry of
the rbc membrane. The rbc membrane is discretized into a finite number
of particles with mass. Then, the energy of the rbc membrane is considered
and the stable biconcave discoidal shape of the rbc is obtained, when the
total energy of the membrane is minimised. Variation of energy and forces
with time confirm that the rbc membrane is stable after 200 s. This stable
rbc geometry can be used with particle methods. It is expected that this
rbc model can be used with smoothed particle hydrodynamics to simulate
the motion and deformation of the rbcs when the blood flows through
micro-capillaries.
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