
ANZIAM J. 55 (EMAC2013) pp.C182–C196, 2014 C182

Cost optimization of a software reliability
growth model with imperfect debugging and a

fault reduction factor

Madhu Jain1 T. Manjula2 T. R. Gulati3

(Received 19 December 2013; revised 12 May 2014)

Abstract

In modern society people depend on both hardware and software
systems. A software system is embedded in every activity of a computer
system. The desired performance of a software system is an important
issue for many critical systems. Over the past decades, many software
models were proposed for estimating the growth of reliability. To
improve software quality, software reliability growth models (srgm)
play an important role. The present investigation deals with a srgm
with imperfect debugging, change points and a fault reduction factor
(frf). A frf is the net number of faults removed in proportion
to the failures experienced. This article proposes a new scheme for
constructing a srgm based on a non-homogeneous Poisson process by

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/7834
gives this article, c© Austral. Mathematical Soc. 2014. Published June 21, 2014, as
part of the Proceedings of the 11th Biennial Engineering Mathematics and Applications
Conference. issn 1446-8735. (Print two pages per sheet of paper.) Copies of this article
must not be made otherwise available on the internet; instead link directly to this url for
this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/7834

Contents C183

considering a constant frf. The main focus is to provide an efficient
parametric decomposition for a srgm. Numerical examples are given
to illustrate the validity of analytical results.

Contents
1 Introduction C183

2 Model description C185

3 Estimation of parameters C187

4 Software release time based on reliability criteria C188
4.1 Software release time based on cost requirement C189
4.2 Software release time based on reliability and cost requirement C189

5 Performance measures for goodness of fit C190
5.1 Mean square error . C190
5.2 Accuracy of estimation . C190

6 Numerical results C191

7 Conclusion C193

References C193

1 Introduction

The goal of every software industry is to develop software which is error and
fault free. To improve the software quality, software reliability engineering
plays an important role in many aspects throughout the software life cycle.
Software reliability assessments such as the number of errors, failure rate,

1 Introduction C184

reliability requirements and total system developing costs are appropriate
criteria for deciding when to stop software testing and when to release it.
Therefore, the modelling of software reliability and accurately predicting
trends is essential for determining overall reliability of software. Numerous
software reliability growth models (srgms) were developed during the last
four decades [11, 17, 7, 13] and still new models are being explored. One of the
most important parameters which controls the growth of software reliability is
the fault reduction factor (frf) proposed by Musa [9]. A frf is defined as the
net number of faults removed in proportion to the failures experienced [10].
Hsu et al. [4] studied the time variable frf for enhancing software reliability
but without a change point. We study an imperfect debugging srgm with
constant frf and a change point. The optimal software release time problem
based on minimizing cost subject to achieving a given level of reliability is
studied. The comparison criteria of goodness of fit is also performed.

Whenever software is developed it is possibile to introduce new errors during
the development/testing phase. Sometimes faults cannot be removed perfectly
because of the complexity of the faults. This phenomenon is called imperfect
debugging. Previous studies [13, 16, 18, 2] incorporated the concept of imper-
fect debugging. Recently, Ahmad et al. [1] analysed a srgm by considering
the log-logistic testing effort and imperfect debugging.

In practice the failure distribution is affected by many factors, such as the
testing strategy, running environment and resource allocation. Changing
these factors during the software testing phase is called a change point.
Shyur [16] studied a srgm with imperfect debugging and a change point. The
environmental effects of a change point on the srgm were evaluated by Zhao
et al. [20]. Kapur et al. [6] examined a srgm for analyzing errors of different
severity using a change point. Li et al. [19] developed a sensitivity analysis of
release times of srgm, incorporating the testing effort with multiple change
points.

The major issue for project managers is to decide when to release the software.
The optimal software release time is the time that customers get the software

2 Model description C185

at minimum cost and a high level of reliability. Okumoto and Goel [12]
proposed the optimum release time for software systems based on reliability
and cost criteria. The optimal testing resource allocation during module
testing considering cost, testing effort and reliability was evaluated by Jha
et al. [5]. Later, Quadri and Ahmad [14] developed an optimal release
policy of a srgm by considering the Weibull testing effort function. Quadri
et al. [15] described srgm with generalized exponential testing effort and
optimal software release policies. Our main focus is to calculate the optimal
release time of the software by using cost-reliability criteria. The effects of
parameters which have the most significant influence on the cost function are
examined.

2 Model description

Most srgm focus on the software testing phase where software defects are
detected, isolated and removed. The proposed model is motivated by the work
of Hsu et al. [4]. In this section, a srgm based on a non-homogeneous Poisson
process (nhpp) is developed by incorporating imperfect debugging, change
point and frf concepts. In the model, constant frf is used to characterize
the effect of environmental factors on the testing process. During the software
testing, the fault detection rate b(t) and fault introduction rate β(t) may
change at some instant in time t = τ .

The fault detection rate function with change point is defined as

b(t) =

{
b1 , 0 6 t 6 τ ,
b2 , t > τ .

(1)

The fault introduction rate during testing with change point is

β(t) =

{
β1 , 6 t 6 τ ,
β2 , t > τ .

(2)

2 Model description C186

The following assumptions are made for modelling purposes.

1. The error elimination process follows the nhpp.

2. The software system is subject to failure at random times caused by
remaining faults in the system.

3. All faults in a program are mutually independent.

4. The mean number of faults detected in the interval (t, t + ∆t] is pro-
portional to the mean number of remaining faults in the system.

5. When detected errors are removed, it is possible to introduce new errors.

6. The fault detection rate is proportional to a constant frf.

Based on the assumptions, we have the following differential equations for
the mean value function m(t) of fault detection:

dm(t)

dt
= b(t)B[a(t) −m(t)] , (3)

da(t)

dt
= β(t)

dm(t)

dt
, (4)

where a(t) is the time dependent fault content function and B is the constant
frf.

Solving the differential equations (3) and (4) using the change point concept,
we get the mean value function

m(t) =

a

(1−β1)

(
1− e−B(1−β1)b1t

)
, 0 6 t 6 τ ,

a
(1−β2)

(
1− e−B[(1−β1)b1τ+(1−β2)b2(t−τ)]

)
+ (β1−β2)m(τ)

1−β2
, t > τ .

(5)

The corresponding failure intensity function is

λ(t) =
dm(t)

dt
. (6)

3 Estimation of parameters C187

3 Estimation of parameters

The parameter estimation is of primary importance in software reliability pre-
diction. The maximum likelihood estimation (mle) is performed to evaluate
the parameters for mean value function m(t) .

Once the analytical solution for m(t) is known for a given model, the pa-
rameters involved in the solution need to be determined. We suggest the
logarithmic mle technique for estimating the unknown parameters. For
n faults, let tk , for 1 6 k 6 n , be the random time at which the kth fault
occurs, with 0 < t1 < t2 < · · · < tk . Then the mle is

L = Pr[N(t1) = m1,N(t2) = m2, . . . ,N(tn) = mn]

=

n∏
k=1

[m(tk) −m(tk−1)]
(mk−mk−1)

(mk −mk−1)!
exp [m(tk) −m(tk−1)] , (7)

where N(tk) = mk is the actual cumulative number of faults detected at
time tk . Applying a logarithm and taking partial derivatives of equation (7)
with respect to some unknown parameter ϕ and setting those equations equal
to zero, we obtain

0 =

n∑
k=1

∂
∂ϕ
m(tk) −

∂
∂ϕ
m(tk−1)

m(tk) −m(tk−1)
(mk −mk−1) −

∂

∂ϕ
m(tn) (8)

For our model ϕ takes the values a, b1 , b2 , β1 , β2 and B.

By replacing ϕ by a, b1 , β1 and B in equation (8) we get the system of
nonlinear equations

a =
(1− β)mn

1− exn
, (9)

n∑
k=1

(tke
xk − tk−1e

xk−1)(mk −mk−1)

exk−1 − exk
=
mntne

xn

1− exn
, (10)

4 Software release time based on reliability criteria C188

Table 1: Summary of data set.
Data set Reference Errors Software project
dsi Pham [13] 136 Bell Laboratories,

25 cpu hours
execution time,
21 700 lines of code.

and
n∑
k=1

[(1− Bb1tk−1)e
xk−1 − (1− Bb1tk)e

xk](mk −mk−1)

exk−1 − exk

=
a(1− exn)(1− Bb1tn)

1− β1
, (11)

where xk = −B(1− β1)b1tk .

Now solve the above nonlinear system of equations using the Newton–Raphson
method for finding unknown parameters a, b1 , β1 and B, by using the data
set given in Table 1.

4 Software release time based on reliability
criteria

By using the mean value function we evaluate some useful metrics which are
used to calculate software quality. There are two commonly accepted metrics,
namely, reliability of the software and the mean time to failures (mttf).

Generally, the software-release time problem is associated with the reliability
of a software system. In this section, we discuss the software release policy
based on the reliability criterion. If we know that the software has reached
its supreme level of reliability for a particular time, then we ascertain the

4 Software release time based on reliability criteria C189

right time to release the software. The conditional reliability function over
some time period ∆t is

R(∆t/t) = em(t)−m(t+∆t) . (12)

mttf is defined as the average elapsed time that passes before a failure occurs
in a software system (cf. Lyu [7]). The cumulative and instantaneous mttf
are, respectively,

mttfc =
t

m(t)
=

t

a(1− e−Bb(1−β)t)
, (13)

mttfI =
1

λ(t)
. (14)

4.1 Software release time based on cost requirement

Let C(T) be the cost function of a software at time T . Then,

C(T) = C1m(T) + C2[m(∞) −m(T)] + C3T , T > 0 , (15)

where C1 is the expected cost of removing a fault during the testing phase,
C2 is the expected cost of removing a fault during the operation phase with
C2 > C1 , and C3 is the expected cost per unit time of testing. By taking
the derivative of above equation with respect to T and equating to zero, an
optimal release time Tc that minimizes the cost function is obtained.

4.2 Software release time based on reliability and cost
requirement

The release time of a software is determined by considering both the reliability
and cost requirements. With these, the optimization problem is [13]

minimize C(T) subject to R(∆T | T) > R0 . (16)

5 Performance measures for goodness of fit C190

Let Tc be the solution of the minimum cost function C(Tc) and Tr be the
solution of R(∆T | T) = R0 . The optimal release time is

T∗ = max(Tc, Tr) . (17)

5 Performance measures for goodness of fit

In this section we compare the performances of existing srgms and the
proposed model with the help of the data set given in Table 1. The comparison
criteria for our model is described below.

5.1 Mean square error

We validate the analytical results of our model by comparing the simulated
fault data with the observed data. The difference between the simulated
data m(tk) and the cumulative number of detected faults mk is measured by
the mean square error (cf. Lyu and Nikora [8])

mse =

n∑
k=1

[m(tk) −mk]
2

n
. (18)

A smaller mse indicates a smaller fitting error and gives a better goodness of
fit.

5.2 Accuracy of estimation

The accuracy of estimation is (cf. Musa et al. [11])

ae =

∣∣∣∣mk − a

mk

∣∣∣∣ , (19)

where mk is the actual cumulative number of detected faults after the test
and a is the estimated number of faults.

6 Numerical results C191

Table 2: Comparison criteria.
Model a b1 B β1 ae mse mttf
Goel & Okumoto [3] 142.3 0.124 − − 0.04643 276.4 10.42
Hsu et al. [4] 136.1 0.299 0.459 − 0.00056 222.6 12.56
Proposed model 125.6 0.39 0.49 0.079 0.07631 140.9 20.81

Table 3: Optimal release values.
Model T∗ (hours) C(T∗) (dollars)
Goel & Okumoto [3] 26.42 56488

Hsu et al. [4] 24.80 53751

Proposed model 19.89 47917

6 Numerical results

In this section we provide numerical results, obtained using Matlab, to examine
the validity of the proposed model. The numerical results are presented to
visualize the effects of different parameters such as frf and cost of removing
an error during the testing period. The estimation of parameters before the
change point are calculated using the data set given in Table 1.

The parameter of estimation results and the comparison criteria are listed in
Table 2. The optimal release time of the software which satisfies both cost and
reliability requirements is displayed in Table 3. From Table 2 it is seen that
our model provides more accurate mse values than other models. We also
observe that our model provides better optimal release times in comparison
to other models.

We also present the sensitivity analysis for a constant type frf after the
change point. The effect of various parameters on the total cost are explored
by varying the parameters B (fault reduction factor), a (initial number of
errors), b1 and b2 (error detection rates) and β1 and β2 (fault introduction
rates). For computational purpose, the cost elements are fixed at C1 = $300,

6 Numerical results C192

Figure 1: Effect of various parameters on C(T) (in thousands of dollars)
over T (in hours) after change point.

7 Conclusion C193

C2 = $900, C3 = $400. The effect of sensitive parameters on the total cost
is depicted in Figure 1. In all plots C(T) first decreases and then increases
during the testing time. However, C(T) decreases with increases in B and b2 .
In contrast, C(T) increases with increases in the number of estimated faults a
and the fault introduction rate β2 .

7 Conclusion

We developed a srgm by incorporating more novel features, namely, imperfect
debugging and a change point. Our model is more realistic and suitable for
modelling the real time software reliability growth. The software cost subject
to the reliability constraint may provide an insight into achieving maximum
reliability within a given budget. The proposed model and findings were
validated via numerical illustrations, which demonstrated the applicability of
investigations carried out for different types of software and large-scale real
time embedded systems.

Acknowledgements The authors thank the unknown reviewers for helping
to make a better quality article for publication. The second author is thankful
to the MHRD, Government of India and CSIR for providing financial support
to attend and present the article at the EMAC2013 conference.

References

[1] Ahmad, N., Khan, M. G. M. and Rafi, L. S. Analysis of an inflection
S-shaped software reliability model considering log-logistic
testing-effort and imperfect debugging, Int. J. Comput. Sci. Net. Sec.,
11(1)161–171, 2011.
http://paper.ijcsns.org/07_book/201101/20110125.pdf. C184

http://paper.ijcsns.org/07_book/201101/20110125.pdf

References C194

[2] Chang, Y.-C. and Liu, C. A generalized JM model with applications to
imperfect debugging in software reliability, Appl. Math. Model.,
33(9)3578–3588, 2009. doi:10.1016/j.apm.2008.11.018. C184

[3] Goel, A. L. and Okumoto, K. Time-dependent error-detection rate
model for software reliability and other performance measures, IEEE
T. Reliab., 28(3):206–211, 1979. doi:10.1109/TR.1979.5220566. C191

[4] Hsu, C.-J., Huang, C.-Y. and Chang, J.-R. Enhancing software
reliability modelling and prediction through the introduction of
time-variable fault reduction factor, Appl. Math. Model., 35(1):506–521,
2011. doi:10.1016/j.apm.2010.07.017. C184, C185, C191

[5] Jha, P. C., Gupta, D., Yang, B. and Kapur, P. K. Optimal testing
resource allocation during module testing considering cost, testing
effort and reliability, Comput. Int. Eng., 57(3):1122–1130, 2009.
doi:10.1016/j.cie.2009.05.001. C185

[6] Kapur, P. K., Kumar, A., Yadav, K. and Khatri, S. K. Software
reliability growth modelling for errors of different severity using change
point, Int. J. Qual., Reliab., Safe. Eng., 14(4):311–326, 2007.
doi:10.1142/S0218539307002672. C184

[7] Lyu, M. R. Handbook of Software Reliability Engineering,
McGraw-Hill, New York, 1996. C184, C189

[8] Lyu, M. R. and Nikora, A. Applying reliability models more effectively
(software), IEEE Software, 9(4):43–52, 1992. doi:10.1109/52.143104.
C190

[9] Musa, J. D. A theory of software reliability and its application, IEEE
T. Software Eng., 3(1):312–327, 1975. doi:10.1109/TSE.1975.6312856.
C184

[10] Musa, J. D. The measurement and management of software reliability,
P. IEEE, 68(9):1131–1143, 1980. doi:10.1109/PROC.1980.11812. C184

http://dx.doi.org/10.1016/j.apm.2008.11.018
http://dx.doi.org/10.1109/TR.1979.5220566
http://dx.doi.org/10.1016/j.apm.2010.07.017
http://dx.doi.org/10.1016/j.cie.2009.05.001
http://dx.doi.org/10.1142/S0218539307002672
http://dx.doi.org/10.1109/52.143104
http://dx.doi.org/10.1109/TSE.1975.6312856
http://dx.doi.org/10.1109/PROC.1980.11812

References C195

[11] Musa, J. D., Lamino, A. and Okumoto, K. Software reliability:
Measurement, Prediction, Application, McGraw-Hill, New York, 1987.
C184, C190

[12] Okumoto, K. and Goel, A. L. Optimum release time for software
system based on reliability and cost criteria, J. Syst. Software,
1:315–318, 1980. doi:10.1016/0164-1212(79)90033-5. C185

[13] Pham, H. Software Reliability, Springer-Verlag, Singapore, 2000. C184,
C188, C189

[14] Quadri, S. M. K. and Ahmad, N. Software reliability growth modelling
with new modified Weibull testing- effort and optimal release policy,
Int. J. Comput. Appl., 6(12), 2010. doi:10.5120/1127-1477. C185

[15] Quadri, S. M. K., Ahmad, N. and Farooq, S. U. Software reliability
growth modelling with generalized exponential testing-effort and
optimal software release policy, Global J. Comput. Sci. Tech.,
11(2):27–42, 2011. http://computerresearch.org/stpr/index.php/
gjcst/article/view/605. C185

[16] Shyur, H.-J. A stochastic software reliability model with imperfect
debugging and change-point, J. Syst. Software, 66(2):135–141, 2003.
doi:10.1016/S0164-1212(02)00071-7. C184

[17] Xie, M. Software Reliability Modelling, World Scientist, Singapore,
1991. C184

[18] Xie, M. and Yang, B. A study of the effect of imperfect debugging on
software development cost model, IEEE T. Software Eng.,
29(5):471–473, 2003. doi:10.1109/TSE.2003.1199075. C184

[19] Li, X., Xie. M. and Szu H. N. Sensitivity analysis of release time of
software reliability models incorporating testing effort with multiple
change-points, Appl. Math. Model., 34(11):3560–3570, 2010.
doi:10.1016/j.apm.2010.03.006. C184

http://dx.doi.org/10.1016/0164-1212(79)90033-5
http://dx.doi.org/10.5120/1127-1477
http://computerresearch.org/stpr/index.php/gjcst/article/view/605
http://computerresearch.org/stpr/index.php/gjcst/article/view/605
http://dx.doi.org/10.1016/S0164-1212(02)00071-7
http://dx.doi.org/10.1109/TSE.2003.1199075
http://dx.doi.org/10.1016/j.apm.2010.03.006

References C196

[20] Zhao, J., Liu, H.-W., Cui, G. and Yang, X.-Z. Software reliability
growth model with change-point and environmental function, J. Syst.
Software, 79(11):1578–1587, 2006. doi:10.1016/j.jss.2006.02.030. C184

Author addresses

1. Madhu Jain, Department of Mathematics, Indian Institute of
Technology Roorkee, India
mailto:drmadhujain.iitr@gmail.com

2. T. Manjula, Department of Mathematics, Indian Institute of
Technology Roorkee, India
mailto:manju.iitr09@gmail.com

3. T. R. Gulati, Department of Mathematics, Indian Institute of
Technology Roorkee, India
mailto:trgulati@gmail.com

http://dx.doi.org/10.1016/j.jss.2006.02.030
mailto:drmadhujain.iitr@gmail.com
mailto:manju.iitr09@gmail.com
mailto:trgulati@gmail.com

	Introduction
	Model description
	Estimation of parameters
	Software release time based on reliability criteria
	Software release time based on cost requirement
	Software release time based on reliability and cost requirement

	Performance measures for goodness of fit
	Mean square error
	Accuracy of estimation

	Numerical results
	Conclusion
	References

