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Abstract

Distributed-order differential models are more powerful tools to
describe complex dynamical systems than the classical and fractional-
order models because of their nonlocal properties. A time distributed-
order diffusion model is investigated. By employing some numerical
integration techniques, we approximate the distributed-order fractional
model with a multi-term fractional model, which is then solved by
an implicit numerical method. The stability and convergence of the
numerical method is analyzed. Some numerical results are presented to
demonstrate the effectiveness of the method and to exhibit the solution
behavior of three different diffusion models.
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1 Introduction

The diffusion equation is a fundamental mathematical model for the evolu-
tion of probability densities: ∂u(x, t)/∂t = K∂2u(x, t)/∂x2 . It describes a
transport process resulting from the random motion of a particle x(t) and is
characterized by 〈x2(t)〉 ∼ Kt . In many applications it is generalized by an
anomalous diffusion relationship 〈x2(t)〉 ∼ tβ [2, 4, e.g.]. This leads to the
time fractional-order kinetic equation [3, 4]

C
0D

β
t u(x, t) =

∂2u(x, t)
∂x2

or
∂u(x, t)
∂t

= 0D
1−β
t

∂2u(x, t)
∂x2

,

where C
0D

β
t and 0D

1−β
t denote the Caputo fractional derivative and the

Riemann–Liouville fractional derivative, respectively. A fractional-order
kinetic equation is classified as:

• a time fractional subdiffusion model for 0 < β < 1 ;

• a classical diffusion model for β = 1 ;

• a time fractional diffusion-wave model for 1 < β < 2 ; and
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• a classical wave model for β = 2 .

The fractional spatial and temporal kinetic models are more suitable than
the standard diffusion model for describing historical data with long-range
dependence because of their nonlocal properties and thus are widely used to
describe anomalous diffusion and relaxation phenomena. These models were
extended to the class of distributed-order models, which provide more useful
tools for modelling non-stationary natural signals [5], especially processes
which cannot be described by one single power law [6], and diffusion resulting
from materials which are subject to a distribution of temperature, electrostatic
field strength or magnetic field strength [1, 7].

The time distributed-order derivative is [1]

D
P(β)
t f(x, t) =

∫γ2
γ1

P(β) C0D
β
t f(x, t)dβ , (1)

for β ∈ [γ1,γ2] , γ1 ,γ2 ∈ N and P(β) a nonnegative weight function. Then,
for m− 1 < β < m and m ∈ N , the general Caputo derivative is

C
0D

β
t f(x, t) =

1

Γ(m− β)

∫ t
0

∂mf(x, s)
∂sm

(t− s)m−β−1 ds .

A distributed-order equation was introduced by Caputo in 1969 and solved in
1995 [8]. The time distributed-order kinetic model [1]

D
P(β)
t f(x, t) =

∂2u(x, t)
∂x2

for β ∈ (0, 2] , (2)

is classified as:

• a time distributed-order diffusion model for β 6 1 ;

• a time distributed-order wave model for β > 1 ; and

• a time distributed-order wave-diffusion model for 0 < β1 6 1 < β2 6 2 ,
where β1 = inf {β | β ∈ suppP(β)} and β2 = sup {β | β ∈ suppP(β)} .
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Different forms of distributed-order fractional kinetic models were studied;
however, analyses of the underlying numerical methods are relatively limited [1,
9].

We provide a numerical method for solving the initial boundary value problem
of the time distributed-order diffusion model

D
P(β)
t u(x, t) =

∂2u(x, t)
∂x2

+ f(x, t) , (3)

where β ∈ (0, 1] and (x, t) ∈ (0,L] × (0, T ] . The time distributed-order
operator D

P(β)
t defined in (1) uses a nonnegative weight function which

satisfies

0 6 P(β) , P(β) 6≡ 0 , 0 <

∫ 1
0

P(β)dβ <∞ .

The boundary and initial conditions of the model are

u(0, t) = 0 and u(L, t) = 0 for t ∈ (0, T ] , (4)
u(x, 0) = φ0(x) for x ∈ (0,L] . (5)

In Section 2, by applying numerical integration [9], we first approximate
the model by a multi-term diffusion model. Then, in Section 3 we solve the
multi-term model using a difference method [10, 11]. Finally, in Section 4 we
demonstrate our numerical approximation with some examples.

2 Implicit numerical method

First, we discretize the integration interval [0, 1] on the grid 0 = ξ0 < ξ1 <
· · · < ξJ = 1 and set ∆ξj = ξj − ξj−1 = 1/J = σ and βj = 1

2
(ξj + ξj−1) =

(2j−1)/2J for j = 1, 2, . . . , J and J ∈ N . Then, using the mid-point quadrature
rule [9],

D
P(β)
t u(x, t) =

J∑
j=1

P(βj)
C
0D

βj
t u(x, t)∆ξj + O(σ2) .
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Thus, the distributed-order diffusion model (2) is transformed into the multi-
term diffusion model

1

J

J∑
j=1

P(βj)
C
0D

βj
t u(x, t) =

∂2u(x, t)
∂x2

+ f(x, t) , (x, t) ∈ (0,L]× (0, T ] .

Next, we assume that u(x, t) ∈ C2([0,L] × [0, T ]) and define xi = ih for
i = 0, 1, . . . ,M and tk = kτ for k = 0, 1, . . . ,N , where h = L/M and
τ = T/N are the space and time steps, respectively.

Define the grid functions Uki = u(xi, tk) and fki = f(xi, tk) . By using the
definition (2), Lemma 4.1 by Sun and Wu [12], and the second-order cen-
tral difference formula, we obtain the discrete form of model (2) at the
point (xi, tk+1) :

1

J

J∑
j=1

P(βj)

µj

[
Uk+1i −

k∑
l=1

(b
βj
k−l − b

βj
k−l+1)U

l
i − b

βm
k U0i

]
= δ2xu

k+1
i + fk+1i + O(τ2−βj + h2 + σ2) , (6)

where bβjk = (k+1)1−βj−k1−βj and µj = τβjΓ(2−βj) [12, for further details].
Let rk+1i be the local truncation error. Then, since βj = (2j − 1)/2J for
1 6 j 6 J and 1/J = σ ,

1+ 1
2
σ = 2− Jσ+ 1

2
σ 6 2− βj = 2− jσ+ 1

2
σ 6 2− σ+ 1

2
σ = 2− 1

2
σ .

Then for all τ < 1 , we derive

|rk+1i | = O(τ2−βj + h2 + σ2) 6 C(τ1+
σ
2 + h2 + σ2) . (7)

For i = 1, . . . ,M− 1 and k = 1, . . . ,N− 1 , let uki be the numerical approxi-
mation to Uki . Then we obtain the implicit numerical scheme

1

J

J∑
j=1

P(βj)

µj

[
uk+1i −

k∑
l=1

(b
βj
k−l − b

βj
k−l+1)u

l
i − b

βj
k u

0
i

]
= δ2xu

k+1
i + fk+1i , (8)
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with boundary and initial conditions

uk0 = 0 and ukM = 0 for k = 1, 2, . . . ,N , (9)
u0i = φ0(xi) for i = 0, 1, . . . ,M . (10)

3 Numerical analysis

In this section we analyze the stability and convergence of the implicit
numerical method (8)–(10).

We rewrite (2) as

(1+ 2Gh−2)uk+1i −Gh−2uk+1i−1 −Gh
−2uk+1i+1

=
1

J

J∑
j=1

P(βj)

µj
G

k∑
l=1

(b
βj
k−l − b

βj
k−l+1)u

l
i +

1

J

J∑
j=1

P(βj)

µj
Gb

βj
k u

0
i +Gf

k+1
i , (11)

for i = 1, . . . ,M− 1 , k = 1, . . . ,N− 1 and G = J/
∑J

j=1
P(βj)

µj
.

Theorem 1. Let uki , for 0 6 i 6 M and 0 6 k 6 N , be the solution of
scheme (11) with boundary and initial conditions (9)–(10). Then

‖uk+1‖∞ 6 ‖u0‖∞ +G(b
βj
k )

−1 max
16l6N

|fl| .
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Proof: We give a simple proof of the theorem using mathematical induction.
Let max16i6M−1 |u

j
i| = |uji0 | for j = 0, 1, 2, . . . ,N . For k = 0 ,

‖u1‖∞ 6 |u1i0 |
(
1+ 2Gh−2 −Gh−2 −Gh−2

)
6
∣∣(1+ 2Gh−2)u1i0 −Gh

−2u1i0−1 −Gh
−2u1i0+1

∣∣
6
1

J

J∑
j=1

P(βj)

µj
Gb

βj
0

∣∣u0i0∣∣+G|f1i0 |
6 ‖u0‖∞ +G(b

βj
0 )

−1 max
16l6N

|fl| .

Suppose that ‖uj‖∞ 6 ‖u0‖∞ + G(b
βj
j−1)

−1max16l6N |fl| for j = 1, 2, . . . ,k .
Then, for j = k+ 1 , by induction and using a similar argument as for k = 0 ,
the theorem is proved. ♠

Remark 2. Since (1− βj)(k+ 1)
−βj < b

βj
k < (1− βj)k

−βj ,

G(b
βj
k )

−1 6
J∑J

j=1
P(βj)(1−βj)

(k+1)
βjµj

6
J∑J

j=1
(1−βj)P(βj)

T
βjΓ(2−βj)

6
1∫1

0

(1−β)P(β)
TβΓ(2−β)

dβ
6 C .

Hence, Theorem 1 is equivalent to

‖uk+1‖∞ 6 ‖u0‖∞ + C max
16l6N

|fl| .

Theorem 3. Suppose u(x, t) ∈ C3,2x,t([a,b]× [0, T ]) is the smooth solution of
the problem (3)–(5) and {uki | 0 6 i 6M , 0 6 k 6 N} is the solution of the
scheme (8)–(10). Let eki = u(xi, tk) − uki for 0 6 j 6 M and 0 6 k 6 N .
Then, for kτ 6 T ,

‖ek+1‖∞ 6 C
(
τ1+σ + h2 + σ2

)
for k = 1, . . . ,N− 1 .
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Proof: Subtracting (8) from (6) we obtain the error equation

(1+ 2Gh−2)ek+1i −Gh−2ek+1i−1 −Gh
−2ek+1i+1

=
1

J

J∑
j=1

P(βj)

µj
G

k∑
l=1

(b
βj
k−l − b

βj
k−l+1)e

l
i +Gr

k+1
i , (12)

for i = 1, . . . ,M − 1 , k = 1, . . . ,N − 1 and where rki satisfies (7). Using a
similar argument to that of Theorem 1, we obtain

‖ek+1‖∞ 6 G(b
βj
k )

−1 max
16l6N

|rl| 6 C(τ1+
σ
2 + h2 + σ2) ,

for k = 1, 2, . . . ,N− 1 , and then the theorem holds. ♠

4 Numerical experiments

In this section, we demonstrate the effectiveness of our numerical scheme and
exhibit the solution behavior of three different diffusion models obtained for
particular choices of the weight function P(β) in Equation (1).
Example 4. Consider the distributed-order problem∫ 1

0

Γ(3− β)C0D
β
t u(x, t)dβ =

∂2u(x, t)
∂x2

+ f(x, t) , (13)

with (x, t) ∈ [0, 1]× [0, 1] ,

u(0, t) = 0 , u(1, t) = 0 , t ∈ [0, 1] , (14)
u(x, 0) = 0 , x ∈ [0, 1] , (15)

and

f(x, t) = 2x2(1− x)2(t2 − t)/ log t− 2t2[x2 − 4x(1− x) + (1− x)2] .
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The exact solution is u(x, t) = t2x2(1− x)2 .

We first approximate the distributed-order diffusion model (13) with the
multi-term model

1

J

J∑
j=1

Γ(3− βj)
C
0D

βj
t u(x, t) =

∂2u(x, t)
∂x2

+ f(x, t) . (16)

Then, we use the method (8)–(10) to compute the numerical solution of
equation (16) with the boundary and initial conditions (14)–(15). Figure 1
displays the profiles of the exact and numerical solutions for this problem
with h = 1/40 , τ = T/20 , σ = 1/10 and h = 1/50 , τ = T/50 and σ = 1/20 .
From Figure 1 it is seen that the numerical solutions are in good agreement
with the exact solutions. This demonstrates the effectiveness of our numerical
method.
Example 5. Consider the classical diffusion, fractional diffusion and time
distributed-order diffusion models

∂u(x, t)
∂t

=
∂2u(x, t)
∂x2

, (17)

∂βu(x, t)
∂tβ

=
∂2u(x, t)
∂x2

, (18)∫ 1
0

P(β)
∂βu(x, t)
∂xβ

dβ =
∂2u(x, t)
∂x2

. (19)

All three models are computed on the same domain (x, t) ∈ (0, 1] × (0, 1]
with the same initial condition

u(x, 0) = x2(1− x2) for x ∈ (0, 1] ,

and the same boundary conditions

u(0, t) = 0 and u(1, t) = 0 for t ∈ (0, 1] .

For h = 1/50 , τ = 1/50 and σ = 1/10 , Figure 2 exhibits a comparison
of the numerical solutions for the three diffusion models. The numerical
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Figure 1: Exact and numerical solutions of u(x, t) from Example 4 over
x ∈ [0, 1] for t = T = 1 and (a) h = 1/40 , τ = T/20 , σ = 1/10 ; and
(b) h = 1/50 , τ = T/50 , σ = 1/20 .
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solution of model (17) is computed using the Crank–Nicolson method; the
numerical solution of model (18) is computed using method (4.5)–(4.7) of
Sun and Wu [12]; and the numerical solution of model (19) is computed using
method (8)–(10). Figure 2 shows the numerical solutions of the classical
diffusion model (17), the fractional diffusion model (18) with β = 0.5 , and
the time distributed-order diffusion model (19) with P(β) = Γ(3− β) .

From Figure 2 we see that the diffusion process simulated by the classical model
is much faster than those simulated by the other two models. The fractional
diffusion model (18) describes sub-diffusion, while the time distributed-order
diffusion model (19) depicts retarded random diffusion as described by Sokolov
et al. [2] and Chechkin [5]. With different weight functions P(β) , different
diffusion processes, including retarded or accelerated diffusions, are obtained.
Thus, the distributed-order diffusion model provides a powerful tool for
simulating different complicated dynamical processes with appropriate weight
functions of distributed order.

5 Conclusions

We investigated an implicit numerical method for the time distributed-order
diffusion model. We first approximated the distributed-order diffusion model
with a multi-term diffusion model by applying some numerical integration
techniques. Then, we provided an implicit numerical method for solving
the multi-term model. Stability and convergence of the implicit numerical
method were proved. Finally, we gave two numerical examples to exhibit the
effectiveness of the method. The first example showed that the numerical
simulation is in good agreement with the exact solution. The second example
compared the diffusion processes resulting from three mathematical models
for different choices of the weight function in the distributed order derivative.
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Figure 2: Numerical solutions of u(x, t) from Example 5 for (a) classical
diffusion; (b) fractional subdiffusion with β = 0.5 ; and (c) distributed-order
diffusion with P(β) = Γ(3− β) .
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