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An early political election problem
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Abstract

Under the democratic systems of government instilled in many
sovereign states, the party in government maintains a constitutional
right to call an early election. Whereas the constitution states that
there is a maximum period between elections, early elections are fre-
quently called. This right to call an early election gives the govern-
ment a control to maximize its remaining period in power. We find
the optimal control for the government by locating an exercise bound-
ary, which indicates whether or not a premature election should be
called. This problem draws upon the methods of optimal stopping
and stochastic control.
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1 Introduction

Under the democratic systems of government in many sovereign states, the
party in government maintains a constitutional right to call an early election.
Whereas the constitution states that there is a maximum period between
elections (typically 3 or 4 years), early elections are frequently called. For
example, the Australian Constitution and Commonwealth Electoral Act gives
the Federal Government the right to call an early election, subject to approval
by the monarch’s representative.

This right to call an early election gives the government a control with
which to optimize its objective of remaining in power for as long as possible.
In some sense, the party in government has an option, which it can freely ex-
ercise. We want to devise the optimal control for the government by locating
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an exercise boundary, which indicates whether or not a premature election
should be called. This problem draws upon the body of literature on optimal
stopping problems and stochastic control. The problem can be compared
with the determination of early exercise for American options in finance.

Balke [2] investigated and modelled the election timing as an optimal
stopping problem by considering the benefits and costs of the government by
calling an early election. Kayser [7] treated election timing as a finite hori-
zon optimal stopping problem and developed a model to predict the degree
of surfing (opportunistic timing) and manipulation (politically motivated
economic intervention) by considering institutional structure and voter char-
acteristics. Election timing as an endogenous policy variable in relation with
other factors such as growth rate, electoral support and other subsequent
economic performance has also been investigated, mathematically modelled
and applied in several countries such as India [4], Japan [5] and United King-
dom [12, 13].

In case an election is called at some time ¢, a mechanism is needed to gauge
the likelihood of the government being returned to power. We have chosen to
use popular opinion polls (Morgan polls: http://www.roymorgan.com.au)
to measure the voting intentions of the Australian public for the Australian
Federal House of Representatives. The format of the poll has varied over
time, but consistently asks the voting intentions from a sample of the voting
public. In more recent polls, the two-party preferred voting intentions are
recorded. In general, samples have been taken every two weeks, but once an
election date is announced, polls are taken approximately weekly, and even
more frequently in the days leading up to the election. However, all of the
data contains irregular sampling intervals, owing to public holidays, etc.

Our model assumes that opinion polls are driven by random processes.
The announcement, distribution and dissemination of news, (whether pol-
icy announcements or exogenous news items) drive the voting intentions of
the public. Figure 1(a) shows the two-party-preferred voting intentions of
the Australian public between Australia’s major opposing parties, the LNP
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(Liberal and National Party) and ALP (Australian Labor Party) over the
last decade or so, along with significant events, which were taken from [11]

and [14].

Balke [2] and other authors [7, 12] have considered the early election prob-
lem previously with somewhat arbitrary expressions for the poll process S;
and conditional probabilities of reelection. Our contribution has been to
calculate early exercise boundaries with a realistic model and with parame-
ters fitted to observed data. Also, our techniques are applicable for data sets
from other countries or state. We have also used a multinomial tree approach
which permits the process S; to diffuse with large jumps, reminiscent of the
observed behaviour. The visualisations of the results in surface plots are also
quite insightful.

2 Finite state and discrete time model

Suppose there are two major parties, A and B, which dominate the election
process. We consider votes to other parties will be distributed to these parties
through the preferential voting system, or that there is a competition for the
seats which are not won by the minor parties. At any time, suppose that
proportion P4 of polled persons intends to vote for party A and Pg intends
to vote for party B. Then our main variable under study is S = P4 — Pg. We
maintain the condition that —1 < S < 1 as popularity cannot exceed 100%.

In the Australian federal electoral system, voters list their preferences for
candidates and then preferences are allocated from unpopular to the more
popular candidates until a winner is determined. Consequently, although
many voters claim, and indeed do, register their primary vote for a minor
party, the deciding quantity is the order in which the two major parties are
listed. So, two-party-preferred poll data is most suitable for our study.

We assume that the longest allowable period between elections is Y years
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and a constant lead time T}, = kdt, for some integer k, takes place between
announcing the election and holding the election. This period is somewhat in
the hands of the government, but according to the Australian constitution,
it must lie between 33 and 68 days and is further restricted as elections
must be held on a Saturday. This constant lead time simplifies the solution
method, and we note that recent elections have all had lead times around the
minimum. We also assume that all requests for an election will be approved.

We model S as a random process which is mean reverting, and has no
memory of its own history (Markovian). Let there be m arbitrary states
of popularity S; € (—1,1) and n equal time intervals dividing the Y years.
Using historical data, we determine the probability of winning the election,
given that on election day the government is in state S; in the polls. This
quantity contains the exaggerated majority effect, sampling and response
errors and any other inaccuracies inherent in any polling system.

Later in our computation, we used the number of states, m = 50 for .S;,
1 =1,2,...,m, lead time T}, = 0.12 year and time step 0t = 0.04 year. The
number of time steps n = Y/dt + 1 with Y either three or four (year term).
We fit an approximate normal distribution to the historical states and use
this to define the grid 5;.

2.1 Formulation and solution method

The notations used in the formulation of our problems are as follows

e P, (t): transition probability from poll state S; to state Sy, over period ¢.
It measures the diffusion in polls over period ¢t. We assume stationarity
of the process, so the transition probabilities remain unchanged even
during the election campaigns.

e (Ji;: conditional probability that the true state of voting intentions
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is Sj, given that poll state is S;. It is the correction term, which contains
sampling and response errors.

e Pr(W|S;): conditional probability of winning the election from true
state S;. It contains the exaggerated majority effect.

e [E(L|S;,t): conditional expected remaining life of the government given
poll state S; and time ¢ € [0, Y] into current term.

We define the poll state of voting intentions as the state of the process
indicated by poll results (contains sampling and response errors) and the
true state as the real state of the process (when the election is held, the true
state is the election result). In each state at every time step the government
can call an early election. The single control afforded to the government in
this problem is the action of stopping (calling an election), and our problem
centres around this optimal stopping problem. We implement numerical
dynamic programming to solve the recursive formulation for the expected
time remaining in government.

If calling an early election, time Tj, will elapse with certainty after the
announcement. In case the government wins the election, the life of the
government is extended and we again consider the same problem, but with
t reset to zero. If choosing not to call an early election, the government
remains in power up to the next time step 0t with certainty. At the new
time t 4 0t the poll state will diffuse to a new value and again the decision
whether or not to call an early election is re-evaluated. At the final time ¢t =
Y | an election must be held, so the latest time to call for an election is at
t = Y-T,. The expected remaining life when calling an early election and
calling no election are, respectively:

E(L|S;, t) = Ty, + iE(usj, 0) Py (T1)Qr; Pr(W1S;) | (1)
E(L|S;,t) = ot + Zm:E(L\Sj,tJr 5t) Py (6t) 2)

J=1
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where we use the Einstein convention for summation over the repeated in-
dex k. So, the expected remaining life is the maximum between calling an
early election and calling no election, that is,

E(L‘Sl, t) = max {TL + Z ]E(L‘S], O)sz(TL>Qk] PI‘(W‘S]) s

Jj=1

5t + ijm(usj,t + 5t)Bj(§t)} . (3)

j=1

We describe the iterative scheme implemented to determine the expected
life E(L|S;, t), which for each t is a vector in R?. Because the solution exists,
we can solve the problem any way, comfortable in the knowledge that if the
method works, then it will arrive at the right solution. We base our method
on Picard iterates [10]. The general idea is starting at time ¢ = 0 using an
initial estimate for the expected remaining life at time zero, we calculate the
expected life at the final time (¢ = Y') and then move backward until we find
the new expected remaining life at time zero which will not match up with
our first estimate. We replace our initial estimate with the current vector
and repeat this procedure. Formally, we define an operator T" which takes
any E € R} and returns 7'() € R In our paper, the ith component of £
at time t, E;(t), will represent an estimate for E(L|S;,t) and [T(E)];(t) will
be an improved estimate for E(L|S;, ).

Given E° = (EY,...,E?) € R, calculate for 1 <i < m,
E}(Y) =)  E}(0)Q;Pr(W]s)).
=1

Then EZI(Y - TL) = TL + Z;nzl EJO(O)PZk(TL)QkJ PI‘(W|S]) and

E}(Y — TL — 5t) = mmax {TL + Z E]O(O)Plk(TL)Qk] PI‘(WlSJ) s

Jj=1
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ot + in: E;(Y — TL)Pij((St)} )

Jj=1

ENY — Ty, —vét) = max {TL + Z EJ(0) P (T1)Qr; Pr(W]S;),

5t + i Ej(Y =Ty — (v— 1)5t)Bj(6t)} :

Continue the calculation until

E}(ét) = mmax {TL + Z E?(O)Hk(TL)QkJ PI(W‘SJ) 5

J=1

ot + Zm: E;(%t)ﬂj(ét)} :

Jj=1

E!(0) = max {TL + i E?(O)Pik(TL)ij Pr(W1S;),

Jj=1

5t + Zm: E}((St)aj(dt)} :

j=1

We then define T(E?) = E'(0) € R7. This is our first iteration. For the
next iteration, we calculate E? = T'(E'). The aim of the method is to obtain
EF(t) — E(L|S;,t) as k — oo. Our computational approach is abbreviated
to the simple iterative Algorithm 1. We define ‘error’ as the max L? norm

Algorithm 1 superscript indices represent the iteration number.
1: Initiate EY as an estimate for E(L|S;,0),i=1,...,m
2: repeat
3. B =T(EF)
4: until error = maxo<,<y |E*(t) — EF1(t)]] < tol
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of the difference between the expected life in two consecutive loops over all
times. Convergence is obtained when this difference is less than a tolerance
value, ‘tol’; whereupon we approximate E(L|S;, t) with EF(t).

Lemma 1 There exists a solution to the system of nonlinear equations for
the expectation E(L|S;,t) in (3).

Proof: The proof follows by the Brouwer Fixed Point Theorem [8, p.200].
Given a vector E° that represents an initial estimate for E(L|S;, 0), define the
operator T' as above. Let P* = maxg, Pr(W|S;) and note P* < 1if S; # 1

for any 7. Let R = % + 1 and define

Q={z eR": |zl < R}. (4

~—

We claim that T(2) C Q. Let E° € . By monotonicity, we have T(E°) <
T(E*), where

E* = (max(E"), max(E"), ... max(E°)) € Q.

Consider a system where Pr(W|S;) = P* for all S;. Then in such a system,
T(E*) > T(E*), where T has the new probabilities of winning P*. In this
new system, there is no incentive to call an election early, so we only need
to consider the second term in equation (3), except at ¢ = Y years. So,

E(L|S;,6t) = (Y — 6t) + P*E(L|S;,0) and for each component
T(E®) = E(L|S;,0) = 6t + (Y — 6t) + P*E(L|S;,0).

Rearranging, TV(EO) = IE(L|Si, 0) = %. But we have R = % + 1 which
yields a contradiction. So, T is a continuous, mapping from a convex set €2
into itself and by the Brouwer Fixed Point Theorem, there must be a fixed

point. [
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2.2 Parameter fitting
2.2.1 Transition probabilities and parameter estimation

We use a maximum likelihood method to estimate the parameters of the tran-
sition probabilities with an assumption that the underlying process consists
of increments driven by the current state and a Gaussian process. Under an
assumption of continuous states, —1 < S < 1, if the poll is in state S; at
time ¢, it will move to a state S5 a time ot later, where the state S; s,
falls in a continuum and is normally distributed with mean S; + (S, t + dt)
and variance o%(S;, t +dt). We estimate p and o with a maximum likelihood
estimator (MLE). This method is capable of handling uneven time incre-
ments which we encounter in the data. We presuppose our model to be the
Stochastic Differential Equation (SDE)

dSt:—,u< S )dt+ath, (5)
1—5?

where W, is a Wiener process and p and o are constants. Our formulation for
the drift coefficient stems from several arguments. By Lemma 6.3 of [6] if Sy €
(=1,1) and p > 102, then the process S; governed by equation (5) remains
within (—1, 1) for all time. The negative autocorrelation discovered in a basic
time series analysis of the data supports a mean reverting coefficient, and
this holds in our model for p > 0. The strength of mean reversion logically
becomes stronger as the magnitude of S becomes larger as the losing party
will take measures to overcome their deficiencies in the polls.

We make an assumption that the poll process exhibits constant volatil-
ity o. This underlying assumption is analogous to the founding studies in fi-
nancial mathematics where stock prices are assumed to obey constant volatil-
ity in the ‘Black-Scholes’ world [3]. In actual fact, the poll data possesses a
weak time dependence, showing clustering in a similar way to the stochastic
volatility models of stock price data. However, in this study our optimal
control analysis is completed neglecting any term structure in volatility.
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With this formulation, we now apply maximum likelihood estimation.
First, we take the Euler discretization to our presupposed model above: for
1=1,2,...,N—1,

Si
Si+1 = Sz — U (1 — S2> Ati + 5i+1 X 51‘_;,_1 ~ N(()’ 0'2(t, Sz)Atz) .

Applying this Maximum Likelihood method to our two-party preferred data,
we found the MLE for o and p are 0.28 and 3.98 respectively. Thus, our model
becomes dS = —3.98 (%) dt+0.28 dW . A simulation of the process is given
in Figure 1(b). The time range is the same as Figure 1(a) and the qualitative

similarities can be seen between the data and the simulated process.

2.2.2 Winning probabilities, sampling and response errors

In this section we calculate the probability that a party wins government
conditional upon a known value of .S and describe the sampling and response
errors. Historical observations show that exaggerated majorities are not un-
common in Australian federal and state politics and in other realms also. We
assume that the probability of winning an election does not depend on the
time since the last election. It is obvious that the probability of winning an
election will be larger from a higher state rather than from a lower state.

The Australian House of Representative is composed of around 150 seats,
and the party which wins the majority of seats holds government. We ne-
glect the small number of seats that are won by the minor parties. Our
approach assumes that the number of seats won depends on the true state S.
The relationship is derived empirically, and this technique captures asym-
metry in the electoral system, which may be overlooked in a parametric
model. We define a quantity to measure the decisiveness of the election; the
proportion of seats won, N, € [0,1]. Winning the election follows surely
if N, > 0.5. Without the representative system and exaggerated majorities,
it would follow that N, = %S + % . Data from Australian Electoral Commis-
sion [http://www.aec.gov.au] for 22 federal elections since 1949 is used to
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FIGURE 2: (a) Proportion of seats won for each S; (b) Probability of winning
election from true state S

derive Figure 2(a). A regression is performed between observed true state S
and the resultant proportion of seats won N,,. Assuming normality and ho-
moscedacity of residual errors, the model yields N,, = 0.524 + 1.475 + €
where € ~ N(0,0.00148) . It follows that Pr(W|]S) = Pr(X > 0.5), where
X ~ N(0.524 + 1.47.5,0.00148) . We calculated this quantity and depict it
in Figure 2(b).

There is much literature on the topic of response error, but not much
quantification for the problem in our setting. The theory of sampling error is
well understood and Kmietowicz [9] performs some analysis on the confidence
interval for samples of S, and derives the sample error: SE? = % 1-5%.
In our setting, with S ~ 0, we have the bound SE < 0.005 (for n = 404).
The construction in finding an estimate for the sampling error @, is as
follows. When S =~ 0, and n is quite large, the true state S will be normally
distributed about the poll state with variance % On the other hand, when S
is far away from zero, the true state will be normally distributed about poll
state with variance (1 — 52).
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FIGURE 3: Expected remaining life — 3 and 4 year terms: (a) early election
permitted; (b) no early election.

3 Results

3.1 Expected remaining life and exercise boundary

We produce the expected remaining life in government to compare a three-
year term to a four-year term. Parameters were derived for the Australian
House of Representatives data as discussed above. It has been debated
whether three or four year terms are preferable. There was a referendum
in 1988 to alter the Constitution to provide for 4 year maximum terms for
members of both Houses of the Commonwealth Parliament, but only 32.92%
of voters were in favour of 4 year terms, see [1]. We calculated the expected
remaining life in government for each of these scenarios (see Figure 3). From
that figure see that the expected remaining life is considerably longer for
four year term because the government has more freedom to exercise the
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FIGURE 4: Exercise boundary for calling an election — 3 and 4 year term.

early election option. Also, the expected remaining life at ¢ = 0 is almost
constant and independent of states S;. Further, observe the effect of param-
eters u and o on the expected remaining life and we find that when p or o
become larger, the expected remaining life at ¢ = 0 becomes shorter. We
also provide the result for the exercise boundary of a three year and four
year term in Figure 4. From these figures, the exercise boundary is mono-
tone in p and o. Larger value of i corresponds with strong mean reversion
in our model and larger 0 means larger volatility.

3.2 No early election permitted

While the Australian constitution permits the federal government to call
early elections, the constitutions of other countries and even some of the
Australian states are mandated only to hold elections with fixed terms. We
compare the expected remaining life in government if the option for early
exercise is removed. From equations (1) and (2), it is immediately apparent
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that the extra opportunities afforded by holding an option for early exercise.
Results for the expected remaining life for three and four year term is given
in Figure 3. Note that the expected remaining life is shorter than when we
include the early election option.

4 Conclusions and further research

We have used a dynamic programming method to solve an early political
election problem in the Australian Federal Election, using the two-party pre-
ferred data. We find the optimal control for government by locating the
exercise boundary and the expected life in government given the current sta-
tus in polls. Parameter estimation for the transition probabilities is obtained
by the maximum likelihood method. We have fitted a mean reverting model
and we found a strong rate of mean reversion. This supports the adage that
“a week can be a long time in politics” as the collective memory of parties’
successes and failures fades quite quickly. We also compare the expected
remaining life for the maximum term of three and four year and found that
in the four year term, the incumbent party will be in power for considerably
longer. Also, at ¢ = 0 the expected remaining life is almost constant for
both three and four year term (around 7.69 and 10.84 years, respectively),
independent of states S; and presumably this is due to the strength of mean
reversion. This condition also happened when we remove the early election
option, giving the expected remaining life at ¢t = 0 of 6.48 and 8.64 years for
three and four year term.

Modelling the opinion polls as a jump diffusion process instead as a mean
reverting process as we have done here, with introduction of random jumps
as major events, is also an extension that can be considered. Also the party
may have control over the polls with timely announcements. Optimizing the
lead time 77, constrained between 33 and 68 days is also another avenue for
pursuit.
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