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Volterra integral equations solved in Fredholm
form using Walsh functions
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Abstract

Recently Walsh function methods have been developed for the nu-
merical solution of several classes of problems, mainly linear and non-
linear integral equations of both Volterra and Fredholm types. In
addition, modifications of the basic approach have led to the solution
of functional differential equations, variational problems and param-
eter estimation problems. Linear Volterra integral equations are re-
written as Fredholm integral equations with appropriately modified
kernels. In this Fredholm equation form, the Walsh function solution
method is more efficient than directly solving the Volterra equation.
Walsh function methods are spectral methods but they have a nat-
ural grid interpretation. Multigrid methods and a variation on the
use of Richardson extrapolation are used on six well known Volterra
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test problems, re-written in Fredholm form, to illustrate that these
methods provide effective and efficient solution methods.
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New methods are always needed to solve integral equations because no single
method works well for all such equations.

There has been considerable interest in solving differential and integral
equations using techniques which involve Walsh functions [2, 3, 4, 10] and ref-
erences therein. One of the motivations for these developments is that these
methods usually involve the use of the fast Walsh Fourier transform, which
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is faster than most corresponding transforms such as the trigonometric fast
Fourier transform. Also, Walsh functions appear to be easily incorporated
into a wide variety of robust general purpose algorithms.

In [3] an effective method to solve linear Volterra integral equations prob-
lems was introduced and it was shown how multigrid and Richardson extrap-
olation methods can be applied to improve efficiency. The method is quite
general and conceptually simple. However the direct solution of Volterra in-
tegral equations using Walsh function methods requires a degenerate kernel
approach in that the first step is to separate the variables. Thus considerable
preliminary work is needed before the Walsh series are introduced and the
sum of terms increases the computational time required to set up the matrix
equation that is to be solved by iteration for the Walsh coefficients.

In this paper we show that, by rewriting the problem in Fredholm form,
the preliminary work and computational time (using the fast Walsh transform
to obtain the double Walsh series for the modified kernel) to obtain the
linear equation for the Walsh coefficients is greatly reduced. The efficiency
of the solution of the equation for the Walsh coefficients can be improved
successfully using multigrid and Richardson extrapolation methods. Thus
Volterra equations can be solved effectively and efficiently with this new
Walsh function method approach.

2 Walsh functions

The Walsh functions have many properties similar to those of the trigonomet-
ric functions. For example they form a complete, total collection of functions
with respect to the space of square Lebesgue integrable functions. However,
they are simpler in structure to the trigonometric functions because they take
only the values 1 and —1. They may be expressed as linear combinations of
the Haar functions [8], so many proofs about the Haar functions carry over
to the Walsh system easily. Moreover, the Walsh functions are Haar wavelet
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packets; see [11] for a good account of the properties of the Haar wavelets
and other wavelets.

We use the ordering of the Walsh functions due to Paley [9]. Any function
f € L*0,1) can be expanded as a series of Walsh functions

f(a:):ZciWi(x) where ci:/ flx)W,;dx. (1)
i=0) 0

Fine [7] discovered an important property of the Walsh Fourier series:
the m = 2"th partial sum of the Walsh series of a function f is piece-wise
constant, equal to the L' mean of f, on each subinterval [(i — 1)/m,i/m).
For this reason, Walsh series in applications are always truncated to m =
2" terms. In this case, the coefficients ¢; of the Walsh (-Fourier) series are
given by

m—1
1
ci=> —Wiili, (2)
=0

where f; is the average value of the function f(z) in the jth interval of
width 1/m in the interval (0, 1), and W;; is the value of the ith Walsh function
in the jth subinterval. The order m Walsh matrix, W,,, has elements W;;.

Let f(z) have a Walsh series with coefficients ¢; and its integral from
0 to x have a Walsh series with coefficients of b;: [° f(¢) dt = > biW;(x).
If we truncate to m = 2" terms and use the obvious vector notation, then
integration is performed by matrix multiplication b = PI ¢ where

p 1 11
pPT — m/2 2m - m/2 , Pl = ( 2, 4 ), 3
" ( “smlmz Ompo RN S 9

and I, is the unit matrix, O,, is the zero matrix (of order m), see [6].
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3 Volterra integral equations and multigrid

Blyth et al. [2] introduced a Walsh function multigrid approach and Richard-
son extrapolation for two very simple Volterra integral equations:

y(x):1+x+/0$y(t)dt and y(m)zg—k/ony(t)dt. (4)

To be useful, this method was extended [3] to two classic test problems:

y(x) =z + /Ox sin (z — t) y(t) dt , (5)

with solution y(z) = z + $2* and

y(x) = cosz — /Oz(x —t)cos (xz —t)y(t)dt, (6)

with solution y(z) = 1(2cos v/3z + 1). These are degenerate kernel prob-
lems where the kernel can be written as a sum of terms with the variables
separated. For example, equation (5) becomes

y(x) =z + sina:/ costy(t) dt — cos:c/ sint y(t) dt. (7)
0 0

After developing some tools to multiply truncated Walsh series, these prob-
lems were rewritten by separating the variables, replacing all functions by
their Walsh series and then multiplying and integrating as appropriate. The
coefficients ¢; of the Walsh series for y(z) were obtained by solving the resul-
tant linear system by iteration. Multigrid methods and Richardson extrapo-
lation were used to improve efficiency.

Since this method was successfully implemented for two test problems
(with degenerate kernels), it can be implemented for most linear Volterra
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integral equations. This is the case since most problems are either of degen-
erate kernel type or can be approximated by a degenerate kernel problem.

Although the Walsh function method is a Galerkin method, in these cases
it takes on some of the characteristics of degenerate kernel methods (see
Atkinson [1, chapter 2|): it is quite general and conceptually simple. How-
ever, there is significant preliminary work to be done to obtain the matrix
equation that is to be solved by iteration and to obtain an efficient algorithm.

4 Volterra equations as Fredholm equations

In order to avoid the preliminary work required (and the resulting sum of
terms of products of Walsh series), instead of solving the Volterra equations
as indicated above, they are rewritten as Fredholm integral equations, with
a modified kernel K (z,t), and solved in Fredholm form.

The first test problem (5) for example, can be rewritten in Fredholm
form as

y(2) = gla) + / R (. t)y(t) dt (®)

where g(z) = z and

R(z.t) = sin(z—1t), 0<t<uz,
0, r<t<l.

The second test problem is equation (6).

Another four standard test problem Volterra integral equations were solved:
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Test problem 3 with solution y(z) = i (sinz + sinhz) is

y(r) =sinz + /Ox(x —t)y(t) dt.

Test problem 4 with solution y(z) = (1 + z)? is

Test problem 5 with solution y(z) = 1(e” + cosz + sinz) is

y(x) = coszx + /Ow y(t)dt.

Test problem 6 with solution y(z) = \/lg sinh(\/?‘?’x) e /% is

y(x) = sinhx — /Ox cosh (z — t) y(t) dt.

The Fredholm integral equations form of these test problems is obvious
and so details are omitted here. They are all of the form of (8). To solve
a Volterra problem in the Fredholm form, Blyth and Uljanov [4] represent
functions y and ¢g by their Walsh series, truncated to m terms. The kernel,

K(xz,t), is approximated by a truncated double Walsh series

where

ks = /O /0 R (e, )W) W (¢) da dt (10)
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FIGURE 1: an illustration of the subintervals for m = 4.

and it is easy to show that the integral equation can be rewritten as the
simple linear problem
Cm =8 + KmCm (11)

where K, is the matrix with elements k;;. This was solved directly, but here
we solve this linear problem (11) by ordinary (Picard) iterations and then
investigate the use of the multigrid technique and Richardson extrapolation
to improve efficiency.

5 The double Walsh series for the kernel

The first task is to calculate the matrix containing the coefficients of double
Walsh series K,,, = (ki;). If m = 2" (as is always the case in applications),
then K,, = #WmeWm. This is the double Walsh transform of the ma-

trix K,, of the average values of K (x,t) on all subintervals, see Figure 1.
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Since the area of each of these 2D subintervals is 1/m?, we rewrite this as

where A,, is the matrix of the double integrals of K (x, t) over the subintervals.
For the ith x-subinterval and jth t-subinterval of a square subregion, the

element of A,, is
/ / Kz, t)dtde, i>j. (13)
(i—-1)/m J (j—1)/

For a;; the modified kernel is non zero only on a triangular subregion, so the
upper limit of the inner integral must be changed to x.

The matrix A,, is constructed for the finest grid, that is the largest m
(equal to 512 here), and then elements are added to give A,, for the coarser
grids down to m = 4. The matrix K, is calculated for the largest m and
successively truncated as m is halved.

6 Solution using iteration and multigrid

Equation (11) can be solved for the vector c,, of coefficients by standard
Picard iteration. Since the exact solution is known, then cgyact can be calcu-
lated. The iterations c,[i]L do not converge to Cgyact but t0 Cryunc:m (the exact
solution of (11) for a given m).

For given m, the ith iteration error is defined as ||Crvuncim — c%” and the
truncation error as ||Crxact — CTrunc:m||- In our error analysis, the Euclidean
norm is used. This is a natural choice since the Walsh series are generalized
Fourier series with the Walsh functions forming a complete and orthonormal
set of basis functions. Thus, from Parseval’s identity, the L? norm of a
function is the /* norm of the Walsh coefficients. For the test problems,
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solved via Equation (11), an error tolerance of 107 (for the iteration error)
was used for m = 512. Test problems 1 to 6 required 6, 5, 6, 14, 10, and 11
(respectively) Picard iterations.

To improve efficiency, Blyth et al. [2, 3] incorporated multigrid techniques.
These are easy to implement even though Walsh function methods are spec-
tral methods, since they are naturally associated with a grid where the unit
interval is divided into m = 2" equal width subintervals. For an introduction
to multigrid techniques, see Briggs [5].

Information from the coarse grid, corresponding to a Walsh series with
m/2 coefficients, is transferred (a process called prolongation) to a fine grid
(of half the grid spacing - corresponding to using Walsh series with m terms).
For the m Walsh coefficients on the fine grid, the first m/2 Walsh coefficients
are set equal to the m/2 coefficients on the coarse grid and the remaining
m/2 coefficients zero.

Similarly vectors (of Walsh coefficients) from the fine grid (with m ele-
ments) are transferred to the coarse grid (by “restriction”) by discarding the
last m /2 elements.

We choose to use V cycles with one iteration at each level at the top,
going down each level and going back up again as well as the top level.
So, from m = 512, a 2-level V cycle, V5, does one iteration for m = 512,
computes a residual and transfers this (by restriction) to the m = 256 level
where the residual correction is computed (on the coarser grid). This residual
correction is transferred to the fine grid with m = 256 (by prolongation)
which is corrected and one iteration is done with this corrected vector on
the fine grid. This takes about 2% “Work Units”, wu’s, which are Picard
iterations at the finest grid.

The solution of the first test problem is typical of the first three problems.
With an error tolerance of 1078 (for the iteration error), 6 Picard iterations
for m = 512 or two 2-level V cycles (with 4.5 wWu’s) are required. This is
the best choice for efficiency (since the use of extra levels does not give much
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improvement but does increase the computational cost. The observation that
the best choice for efficiency is to use V cycles of (only) 2 levels is consistent
with experience of many implementations of multigrid methods, see [1].

Test problem 4 has the slowest convergence — 14 Picard iterations or 4 V,
(9 wu’s) or 3 V3 (7.7 wu’s) or 2 V4 (5.3 wu’s) are required. The results
for the test problems 5 and 6 are very similar where the error tolerance is
achieved with 10 and 11 (respectively) Picard iterations or 3 Vy (6.75 Wu'’s)
or 2 V3 (5.1 wu’s) or 2 Vy (5.3 wWu’s). For these more slowly convergent
problems, the best choice for efficiency is to use V cycles of (slightly) more
than 2 levels.

7 Nested iteration and Richardson
extrapolation

Multigrid methods increase efficiency but work with an error tolerance that
is the iteration error — not the actual (total) error. Since Walsh function
methods are locally convergent with order two, we have introduced Richard-
son extrapolation [2; 3]. This idea is applied in two ways. The final result
is extrapolated (in the usual way) to estimate the “exact” result. This uses
the familiar formula where Cgyact i8S approximated by %Cgm — %cm )

To estimate good coefficients for the next grid when using nested iteration,
we consider the two previous (coarse) grid levels and use Richardson extrapo-

lation to estimate the Walsh coefficients for the next level: cy,, ~ gcgm— %cm .

Of course the estimation of c4, can be applied only for the first m of
the 4m terms. For further details, see [2, 3]. We call this a Richardson seed
(for the iteration at the 4m level). Our Richardson seed nested iteration
method starts by calculating the coefficients of m = 4 and m = 8 by the
ordinary iteration in that level using 6 iterations. From m = 16 and upwards,
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TABLE 1: Iteration error and total error for m = 512 using Richardson seed

and nested iteration for test problems 1 and 4.

C280

Test problem 1 Test problem 4
v WU | Iteration Error Total error | Iteration Error Total error
1 1.33| 6.01x107% 656x10710] 1.78x107* 588 x 1074
2 267 2.30 x 107 3.74 x 10710 1.56 x 107 6.45 x 107
3 4.00| 471 x107"  3.65x 1071 7.39 x 1076 6.56 x 1078
4 533 5.83x1071%  3.65x 10710 3.35 x 1076 5.21 x 1078
5 6.67| 4.82x107%  3.65x 1071 1.32 x 1076 4.52 x 1078

we perform nested iteration with our Richardson seed and v iterations at
each level, up to the highest (m = 512) level. At the finest grid, ordinary
Richardson extrapolation is used to estimate the solution. The error of this
extrapolated solution is called the total error.

Test problem 1 (typical of the first three test problems) has truncation
error 2.4 x 1077 and Table 1 shows that one iteration, v = 1, gives high
accuracy for the total error. Using v = 2 gives a small improvement; more
iterations reduce the iteration error but not the total error.

Test problem 4 (which has the slowest convergence), gives high accuracy
for the total error with v = 3, see Table 1. This takes only 4 wu’s. More
iterations reduce the iteration error but don’t reduce the total error by much.

8 Conclusion

The direct solution of Volterra integral equations using Walsh function meth-
ods requires a degenerate kernel approach in that the first step is to separate
the variables. Thus considerable preliminary work is needed before the Walsh
series are introduced and the sum of terms increases computational time re-
quired to set up the linear equation, corresponding to (11).
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By rewriting the problem in Fredholm form, the computational time to
obtain the linear equation (11) is greatly reduced. For simplicity, we used the
double Walsh transform (12) here, but in practice the fast Walsh transform,
FWT, would be used. The FWT is an analogue of the fast Fourier transform,
but is faster.

Multigrid methods can be used to improve efficiency. However our “work
unit” measure ignores (as is usually the case [5]) some overheads such as
inter-grid transfers. We also ignore the cost of calculation of the residual,
so this would add half a wu for each 2-level V cycle. However multigrid
methods reduce iteration error and only slightly effect the total error. We
conclude that out Richardson seeded nested iteration method, with extrap-
olation, is superior: it is efficient and it reduces the total error. The Walsh
function method to solve Volterra equations is fast and efficient when our
Richardson seeded nested iteration method is applied to the Fredholm form

of the problem.
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