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Numerical solution of inverse Sturm-—Liouville
problems

Alan L. Andrew™”
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Abstract

A new algorithm is proposed for solving the inverse Sturm—Liouville
problem of reconstructing a symmetric potential from eigenvalues. It
uses Numerov’s method instead of the second order method of the
related algorithm of Fabiano, Knobel and Lowe. An extension by
Andrew and Paine of the asymptotic correction technique of Paine,
de Hoog and Anderssen is the key to the success of the new algo-
rithm. Numerical results show that it can produce good accuracy
even from very limited data.
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1 Introduction

Numerical methods for computing eigenvalues, A, and eigenfunctions, y, of
the Sturm-Liouville problem

-y Faqy =My, (1)
y(0) = y(m) =0 (2)

(the “direct” problem) have reached a high level of sophistication [31]. (Herein
y and ¢ denote functions of position, whereas y(z) and ¢(x) denote their val-
ues at a position z.) This paper is concerned with the more difficult inverse
Sturm-Liouville problem of computing ¢ from a knowledge of the eigenvalues.
It is well known that the eigenvalues of (1-2) do not define ¢ uniquely, since, if
y and ¢ are replaced by § and ¢, where y(z) = y(7 — ) and q(z) = q(7 — z),
then the eigenvalues are unchanged. Some additional conditions ensuring
uniqueness, and some conditions ensuring existence, are discussed in [4, 26]
and the references given there. We consider a case first studied in [15]—that
in which ¢ is required to be continuous and also symmetric:

q(z) =q(r —x), forall ze[0,7]. (3)

Inverse eigenvalue problems have been more intensively studied in the fi-
nite dimensional case [16, 17], and the idea of using finite difference methods
to replace the inverse Sturm-Liouville problem by a matrix inverse eigenvalue
problem is often given as motivation for work on the matrix inverse eigen-
value problem [27]. It is now known [28] that the naive approach suggested in
some early papers gives answers that are not even the correct order of mag-
nitude, as the finite difference eigenvalues do not have the same asymptotic
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behaviour as those of the continuous problem. The difficulty is obscured in
the numerical example of [27] which uses as input, not the eigenvalues of the
differential operator, but those of its finite difference approximation, which
would not be known in real applications. That example tests the effectiveness
of the methods of [27] for solving the matriz inverse eigenvalue problem, but
provides no evidence of the usefulness of the methods of [27] for the more
difficult inverse eigenvalue problem for differential equations.

Two methods of overcoming this difficulty have been found. The first [23]
uses a completely different (and non-sparse) matrix eigenvalue problem. The
second, first developed by Paine [28], combines the classical finite difference
equations with a simple “asymptotic correction” technique [5, 10], introduced
in [29] for the direct problem. The technique takes advantage of the follow-
ing property of the asymptotic expansion (as ¢ — oo) of the error in the
approximation to the ¢th eigenvalue obtained by many finite difference and
finite element methods. At least for sufficiently smooth ¢, the leading term
in this expansion is independent of q. Moreover, in the case of constant g,
this error is often known in closed form. The idea is that, before the matrix
inverse eigenvalue problem is solved, a correction is added to the eigenvalues.
This correction is calculated so that, in the case of constant ¢, the corrected
eigenvalues would be those of the discrete problem rather than the continuous
problem [4].

Paine [28] used a method of [18] to retrieve a tridiagonal matrix from the
corrected eigenvalues and, following [22], used a numerical implementation
of the Liouville transformation to extract information from the computed
off-diagonal elements. A simplification of this approach was given in [19, 20].
Marti [25] used the fact that the off-diagonal elements are already known,
and solved for the diagonal elements only, using Newton’s method. This
approach was further developed in [30]. The work of [25] used a (second
order) finite element method [14], but [30] used the (second order) finite
difference scheme of [28, 19, 20]. The big advantage of the approach of [25, 30]
is that, since the off-diagonal elements are no longer treated as unknowns, (3)
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ensures that, when n eigenvalues are available, we may choose the mesh
length 7/(2n+1), so that the matrix dimension is 2n. As well as refining the
mesh that can be used with a given number of eigenvalues, this ensures that
only the first half of the matrix eigenvalues are required for the calculation.
It is precisely these eigenvalues for which asymptotic correction is known to
be most successful [10, 13, 29]. Fabiano, Knobel and Lowe [21] extended
the work of [25, 30], using the same second order finite difference scheme as
in [28, 19, 20, 30] and using the modified Newton’s method [2] instead of
Newton’s method. They considered both the case (3) and a case in which
certain other spectral data are used with more general q.

This paper refines the algorithm of [21] by using Numerov’s method [13]
instead of the second order method. As in [13, 19, 20, 25, 28, 30], only the
boundary conditions (2) are considered, but asymptotic correction has also
been successfully used with Numerov’s method for other boundary condi-
tions [9, 11, 12]. The use of Numerov’s method for inverse problems with
more general boundary conditions will be considered elsewhere.

2 New algorithm

Given numbers \; < --- < )\, , we seek a vector q = (qu,...,q,)! where, for
i=1,...,n, ¢ is a good approximation of ¢(ih), where h = 7/(2n + 1) and
q is a function satisfying (3) such that the first n eigenvalues of (1-2) are
A,y An . Numerov’s method for the direct problem (1-2) approximates
A1, ..., A, by the eigenvalues Ay < --- < A, of

—Au+ BQu = ABu, (4)

where A = (a;;) is a symmetric tridiagonal 2n x 2n matrix with a; = —2/h?
and a; ;11 = 1/h?*, B=1+h*A/12, and @ is the centrosymmetric 8] diago-
nal 2n x 2n matrix diag(q(h), ¢(2h),...,q(nh),q(nh),... ,q(h)). The results
of [13] show, by the argument used in [4], that the appropriate corrected
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eigenvalues are

. . 2 .
SRSV 12 sm' (éh/2) e
h?[3 — sin“(ih/2)]

=1,...,n. (5)

Some methods for solving the inverse eigenvalue problem for the matrix
equation (4) are given in [24], but, following [21], we used the modified New-
ton method. More precisely, we used the recurrence relation

q(k +1) = q(k) — [A'(0)]'£(k), (6)
where f(k) and q(k) are n-vectors with ith components A; (k) — \; and ¢; (k)
respectively; ¢;(k) is the kth approximation of ¢;; A;(k) is the ith eigenvalue
of (4) when @ is replaced by diag(qi(k), ..., qn(k),qu(k), ..., q1(k)); A is the
n x n Jacobian matrix whose ijth element, A; ;, is the partial derivative of A;
in (4) with respect to the jth diagonal element of @; and A’(0) is the value

of A’ when @ = diag(q1(0),...,¢.(0),¢.(0),...,q1(0)).

Since A and B are symmetric commuting invertible matrices, it follows
that AB™' = B™'A = (B~'A)” and hence by (4)

—uw'B'A+u]Q=Aul, i=1,....2n. (7)

One of several ways [6, 7] to compute A; ; is to differentiate (4) with respect
to g;. Since A and B are independent of @, it follows that, provided all the
required partial derivatives exist,

—B ' Au,; + Q ju; 4+ Qui; = A ju; + Ajug (8)

where the subscript “, ;7 denotes the partial derivative with respect to g;, so
that the only nonzero elements of () ; are its jth and (2n+ 1 — j)th diagonal
elements, both of which are one. Premultiplying (8) by ul and using (7)
gives

Aij=u!Qju;/ulu;. 9)
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(This result can also be derived without the requirement that partial deriva-
tives of the eigenvectors exist [6].) In Algorithm 1 below, q(0) is chosen so
that all its components are equal. In this case, the jth component of u; is
sin(ijh) and hence, since Z?Zl sin?(ijh) = (2n + 1)/2, it follows from (9)
and the definition of () ; that

4

A;;(0) = : sin?(ijh) . (10)

Algorithm 1:
Input: n, eigenvalues Ay, ..., A\, and parameters ¢, V.

1. Set k=0and d=e¢+1. Fori=1,...,n set

n

1 1
:(0) = ﬁ;&-— s D@ +1). (11)
2. Compute the corrected eigenvalues Mooy M using (5).

3. Compute the n? elements, A, ;(0), of A’(0) using (10).
4. Repeat untild <cor k> N.

4.1. Compute the eigenvalues A;(k), i =1,...,n of (4).
4.2. Compute f(k) and hence compute q(k + 1) using (6).
4.3. Compute 6 = ||q(k+1) —q(k)|| .

44. k—k+1.

5. Output k, §, ¢1(k),...,q. (k).

In the special case when ¢ in (1) is constant, (11) ensures that ¢;(k) =
q(ih) for all k (since \; = i? + ¢ in that case). This choice of q(0) allows
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the condition “gq is sufficiently small” imposed in [21] (which takes q(0) =
0) to be weakened to “q is sufficiently close to a constant”. The output
values of k£ and 0 indicate the number of iterations used in Step 4 and how
well ¢;(k) approximates ¢; = limy . ¢i(k). The number of iterations is
controlled by the input parameters ¢ and N. The amount of time required
by additional iterations is generally very small, especially when the methods
of [1] are used to take advantage of the tridiagonal centrosymmetric structure
of the coefficient matrices. However, our goal is to find ¢(ih), and how well
¢; approximates ¢(ih) depends on how well (4) approximates (1). For all n
we tested with ¢(x) = sin(z), we found that |¢;(k) — ¢;| < |q(ih) — ¢;| for
all £ > 4 and all ¢, so that using very large k produced only slightly better
estimates of ¢(ih) than k = 5. As with all numerical algorithms, attainable
accuracy is limited by the quantity and quality of the available data, that is
by the number of accurately known eigenvalues. It is n, not k, that is critical
in determining how well (4) approximates (1).

Convergence of (6), though not a sufficient condition to ensure that
|g; — q(ih)] is small, is nevertheless necessary for the success of Algorithm 1.
This is where (5) is essential. When the eigenvalues, \,...,\,, of the dif-
ferential equation were used instead of the corrected eigenvalues Xl, e ,Xn
in (6), that is when the ith element of f(k) was taken as A;(k) — A; instead
of A;(k) — i, the iteration did not even converge. Even in the trivial case of
constant ¢ (when Algorithm 1 gives ¢;(k) = ¢(ih) for all k and ), if the un-
corrected eigenvalues \; are used instead of the corrected eigenvalues Xi, then
the iteration of Step 4 diverges. As noted in [25] and [30], the second order
methods studied there also have this property of “no convergence without
asymptotic correction”.

Table 1 shows the error (computed ¢ — true ¢) in the results given by
Algorithm 1 in the case ¢(x) = sin(z), with ¢; approximated by ¢;(12). “Ex-
act” eigenvalues for this table were computed using the formula Cj (175, 125)
of [11, equation (28)]. The three values of n chosen (5, 16 and 49) give mesh
lengths 7/11, 7/33 and 7/99 respectively, so that, if convergence is O(hP)
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TABLE 1: Error in estimate of ¢(im/11) obtained from the first n eigenvalues

1 n=2>9 n =16 n=49 | ratiol ratio2
1| 6.25E-3 -3.59E-4 —-1.46E-5 17 25
2| 215E-3 9.32E-5  3.53E-6 23 26
3| -9.60E4 -3.79E-5 -1.41E-6 25 27
41 451E4 1.69E-5 6.20E-7 27 27
5| -1.32E4 —-489E6 -1.80E-7 27 27

as h — 0 (that is as n — o0), the ratios of the errors in consecutive columns
should be approximately 3P. In Table 1, ratiol gives the ratio of the error
with h = 7/11 to that with h = 7/33 while ratio2 gives the ratio of the
error with h = 7/33 to that with h = 7/99. These appear to approach
27 = 33, indicating a convergence rate of O(h3) as h — 0. The rate of con-
vergence is not uniform, being initially slower near the boundary, but even
near the boundary, convergence was better than O(h?). Indeed, convergence
was sufficiently regular to suggest that O(h?) extrapolation may be useful,
even quite close to the boundary. For the direct problem [3, 5], extrapola-
tion has been found to perform better with the corrected Numerov method
than with the corrected second order method. It would be interesting to see
whether similar results could be established for the inverse problem. How-
ever, even without extrapolation and even with quite small n, the results
obtained by our method are already so accurate that if they were displayed
by the (graphical) method used to present results in [21], the error would be
too small to detect. Since the original version of this paper was written, the
author has obtained further numerical results comparing Algorithm 1 with
the method of [21] for a number of different potentials, g. These results,
which he hopes to discuss more fully elsewhere, suggest that Algorithm 1
gives more information about ¢ from a given set of eigenvalues than does the
method of [21].
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