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Abstract

This article considers the risk of disclosure in linked databases when
statistical analysis of micro-data is permitted. The risk of disclosure
needs to be balanced against the utility of the linked data. The current
work specifically considers the disclosure risks in permitting regression
analysis to be performed on linked data. A new attack based on
partitioning of the database is presented.
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1 Introduction

Large amounts of micro-data are collected by government agencies through
surveys, censuses and administrative sources. On the one hand, the custodians
of these data are legally responsible for minimizing the risk of disclosure of
sensitive information contained in these data; on the other, these data may
contain vital information that may be used to inform public policy or be
of other benefit to society. Useful information can be obtained by linking
the micro-data collected by different data custodians. In Australia, the
Australian Bureau of Statistics (abs) is charged with the task of linking data
from different custodians (e.g., government departments). In other words,
the abs serves as an integrating authority. As an integrating authority, the
abs needs to maximize the inherent value of the linked data, while protecting
the legislative requirements of all data custodians. Balancing utility and
disclosure risk is thus a serious issue for the abs. Formally, disclosure is said
to occur if data can be attributed to a specific entity (person or organization)
from whom it was collected. On a naive level, it may appear that it would be
sufficient for the abs to adopt the same safeguards against disclosure as the
submitting data custodian. However, the risk of disclosure of data from linked
databases is far greater than the risk of disclosure from a single database.
These risks have been studied by a number of authors including Gomatam et
al. [6], O’Keefe and Good [9], Reiter [10], Reiter and Kohnen [11], Reznek [12],
Sparks et al. [14, 15]. In addition, Duncan et al. [5] and Hundepool et al. [7]
give good general references on statistical disclosure control.
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The abs makes linked data available to legitimate users such as government
departments and university researchers. To minimize the risk of disclosure,
these users are not allowed direct access to the data. Instead, the users are
required to log in to a secure remote server, on which they are permitted
to perform specific analyses. Only the results of the analyses are made
available to the user. Traditionally, the permitted analyses have been limited
to the generation of descriptive statistics, graphs, and simple hypothesis tests.
However, due to growing demand from researchers, the abs is working on a
system that permits the development of a limited number of statistical models,
such as regression analysis. Previous research on managing the disclosure
risk presented by statistical modelling focused primarily on legitimate users
who are not also data custodians [15, 8, e.g.]. However, the possibility that a
malicious individual working for one of the data custodians may try to obtain
data to which it is not entitled adds another dimension to management of
the disclosure risk. For example, one data custodian (dc-a) may develop
statistical models which combine data that it contributed with data from
another data custodian (dc-b). Although dc-a has complete information on
the data it submitted, dc-a is not legally allowed to have access to raw data
submitted by dc-b. In view of this, the abs needs to minimize the risk that
dc-a may exploit knowledge of its own data, to develop a statistical model
that results in disclosure of data submitted by dc-b.

More formally, the question considered is stated as follows. Is it possible
for a malicious entity to exploit statistical models to by-pass the system of
safeguards that are currently in place? The specific situation considered in
this work is limited to one where the malicious entity is also a data custodian.
Furthermore, the statistical models considered are limited to linear regression
models whose coefficients are estimated by the least squares method. Section 2
describes some of the known attacks on the system and some of the safeguards
that abs currently has in place to defend against these attacks. Section 3
presents a new attack based on partitioning the data set. Section 4 discusses
some of the consequences of the new attack, and whether existing safeguards
may be sufficient to protect against this attack. Section 5 provides conclusions
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and directions for future work.

2 Known attacks and existing defences

As a first line of defence, the abs established a protocol that requires users
to log in to a remote server and perform statistical analysis on the server.
Rather than have access to the raw data, the user is only permitted to view
the results of the analysis that he or she requests. This includes descriptive
statistics such as means, medians and standard deviations, graphs, results of
hypothesis tests including p-values and confidence intervals, correlation and
regression coefficients, their standard errors and related confidence intervals
or p-values. However, even with these protections in place, the system
contains vulnerabilities that can result in disclosure. Over the past decade or
so, a number of researchers have studied vulnerabilities in linked statistical
databases and proposed defences against them. O’Keefe and Chipperfield [8]
provided a good summary of the current state of research on reducing the
risk of disclosure.

We consider a specific scenario which was presented by the abs for consid-
eration at MISG 2013. In this scenario the entity trying to exploit these
vulnerabilities is also a data custodian who has submitted some data to the
linked database. This may not be a likely scenario. However, the onus of
protecting against such attacks by rogue entities or rogue employees of a
genuine data custodian, falls on the abs, in its role as an integrating authority.
The scenario may be described more formally as follows.

Suppose that two data custodians, dc-a and dc-b are custodians of different
sets of data for the same sample of a population. For simplicity, suppose
dc-a has contributed variables x1, x2, . . . , xp to the linked database, and
dc-b has submitted variable y to the same linked database. Since dc-a is
a custodian of the variables x1, x2, . . . , xp, it has complete information on
these variables for each entity in the population. In addition, dc-a may
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have access to the identity of each entity in the population. However, dc-a
is not legally entitled to the value of y for specific entities. Suppose also,
that dc-a is entitled to perform regression analysis (via a remote server) on
the linked database that includes the variables x1, x2, . . . , xp and y. Finally,
suppose that dc-a is interested in attacking the database to try and determine
the value of y for a specific entity. When y is a continuous variable, some
of the known vulnerabilities that dc-a could exploit are described below.
These vulnerabilities can be exploited by anyone with access to the remote
analysis server, even if they are not data custodians. These attacks have
been discussed extensively [8, e.g.]. However, the additional information
available to a data custodian (dc-a) makes the system more vulnerable to
these attacks. Therefore these attacks are presented below only in the context
of the attacker being the data custodian, dc-a, who has partial knowledge of
the data set, as described above.

Perfect models or models with very high correlation A perfect model
is one which perfectly fits the data. If dc-a is able to identify a perfect
model with one or more of x1, x2, . . . , xp as the independent variable(s), and y
as the dependent variable, then it would be able to use knowledge of the
variables x1, x2, . . . , xp, to find the exact value of y for all entities in the
database. Furthermore, even if the model is not perfect, a model with very
high correlation may enable dc-a to determine the value of y to a very high
degree of accuracy. This would present an unacceptable level of disclosure
risk. O’Keefe and Chipperfield [8] presented additional details in the more
general case where the attacker is not necessarily a data custodian.

Saturated models A saturated model is one which has a very large number
of independent variables. From a statistical perspective, saturated models
are not considered to be good models, since they tend to underestimate the
regression coefficients of individual independent variables. However, saturated
models often have very high predictive ability, and can generally be used to
predict the value of the dependent variable with a high degree of accuracy.
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Once again, if dc-a is able to exploit this property of saturated models, then
it would present an unacceptable disclosure risk. O’Keefe and Chipperfield [8]
and Ritchie [13] presented additional details in the general case where the
attacker is not necessarily a data custodian.

Sparse models In this context, a sparse model is one which has very few
unique data points. For example a sparse model may consist of just one
data point, in which case, it presents the exact value for a specific entity.
Alternatively, if the number of data points equals the number of independent
variables, then the model equation could exactly (or with a very high degree
of accuracy) determine the hyperplane through the points that were used
to develop the model. From a statistical perspective, sparse models are
not considered good models, because they rarely (if ever) have statistically
significant coefficients. However, if dc-a is able to fit a sparse model, then
it would be able to accurately identify the value of y for each entity, whose
data was used to develop the regression model. O’Keefe and Chipperfield [8]
and Sparks et al. [15] presented details of the issues related sparse models in
a more general context.

There are some obvious defences against the simple vulnerabilities described
above. These have been studied extensively, and have been implemented in
the abs remote server systems. Chipperfield et al. [2] presented these and
other simple defences. Some of these defences include the following.

Models with very high correlation are not permitted The abs sys-
tem is designed to disallow regression models with R2 > 0.95 (R > 0.975).
This provides a defence against the vulnerability presented by perfect models
or models with very high correlation.

Defence against saturated models The number of independent variables
is restricted to 30. This reduces the likelihood that any user is able to develop
a saturated model.
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Defence against sparse models The minimum number of points that
can be selected for modeling is set at 50. Together with the restriction on
the number of independent variables, this prevents a user from developing a
sparse model.

Several other simple attacks have been considered and defences against these
attacks have already been implemented in the abs system. These attacks
and defences are not considered here. Instead, the rest of this section focuses
on some of the more sophisticated known attacks, which involve comparing or
aggregating the results of several regression models obtained from the remote
server.

Differencing attack Suppose dc-a wants to target the y-value, yE, as-
sociated with a specific entity, E. dc-a may try to achieve this as follows:
First, dc-a uses the remote server to develop a regression model on the
entire data set with x1, x2, . . . , xp as the independent variables and y as the
dependent variable. Suppose this regression yields β0,β1,β2, . . . ,βp as the
estimates of the regression coefficients. Next, dc-a drops the data point
(x1E, x2E, . . . , xpE,yE) related to E, and performs the same regression on the
reduced data set. Suppose the corresponding estimates of the regression
coefficients are β0E ′,β1E ′, . . . ,βpE ′. dc-a can then exploit its knowledge
of x1, x2, . . . , xp, to calculate yE. Cox [3] and O’Keefe and Chipperfield [8]
presented the differencing attack in a more general context.

Leverage attack The leverage h of a data point (x1, x2, . . . , xp) is a mea-
sure of its distance from (x̄1, x̄2, . . . , x̄p) where x̄i is the arithmetic mean
of the variable xi [16]. If a data point has a high leverage value, then a
regression model may predict its y-value very accurately. The leverage of a
point depends only on its values on the independent variables and not on the
dependent variable. Therefore, dc-a can use its knowledge of x1, x2, . . . , xp to
identify leverage points and exploit this information to determine the y-value
for any entity that has a high leverage value. On a more sophisticated level,
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dc-a could use an appropriate transformation on x1, x2, . . . , xp to force a
specific entity to have a high leverage value. It could then use the remote
server to develop a regression model with the transformed x-variables as
the independent variables and y as the dependent variable. The resulting
regression equation can be expected to accurately determine the y-value
for the entity with high leverage value. Details of the leverage attack were
presented in a more general context by O’Keefe and Chipperfield [8] and
Gomatam et al. [6].

The abs has implemented a number of defences against these and other
potentially sophisticated attacks on the system. The simpler defences involve
dropping points from the data set and restricting transformations. For
example, points with a high leverage value are dropped from the requested
analysis, if they are detected. In addition, a few points are randomly dropped
from the data set to minimize the risk of a successful attack against a specific
entity. Furthermore there are restrictions on the types of transformations
that are permitted. Specifically, transformations that combine variables that
are contributed by different data custodians are disallowed. All these defences
are designed to prevent leverage and differencing attacks, and to minimize the
likelihood of success of other attacks that may not yet be known. Chipperfield
et al. [2] presented details of these defences.

A more sophisticated defence involves perturbation of the regression output.
This defence mechanism works by adding a small amount of noise to the
estimating equations. The amount of noise needs to be carefully determined
since large changes in the size of the regression coefficients or related p-values
would compromise the utility of the output. In addition, the perturbation
cannot significantly alter the error distribution, since it could compromise
confidence in the model fit. A detailed analysis of these issues was presented
by Dwork et al. [4]. The perturbation algorithm used by the abs is confidential
and is not presented here. Some of the details and associated challenges were
presented by Chipperfield at al. [2].
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3 The split leverage attack

This section presents a new attack called the split leverage attack, which was
developed during the misg. The attack is designed to exploit the vulnerability
presented by the existence of a high leverage point in the dataset. It involves
partitioning the data into disjoint subsets to prevent the system from detecting
the leverage point; hence the name, split leverage attack. In general, finding
an appropriate partition may be a difficult task, especially if the attacker
does not have access to the raw data. However, if the attacker is also the
data custodian who submitted the raw data on the independent variables,
then finding an appropriate partition would certainly be feasible. This is a
key assumption of the attack.

As in the previous section, suppose that two data custodians, dc-a and dc-b
are custodians of different sets of data for the same sample of a population. For
simplicity, suppose dc-a has contributed data on variables x1, x2, . . . , xp to
the linked database, and dc-b has submitted data on a continuous variable y
to the same linked database. Since dc-a is a custodian of the variables
x1, x2, . . . , xp, it has complete information on these variables for each entity
in the population. However, dc-a is not legally entitled to the value of y
for specific entities. Suppose also, that the data set contains a high leverage
point, l, and that dc-a is interested in exploiting knowledge of this high
leverage point to gain information about the y-value of the entity associated
with l. As before, assume that dc-a is permitted to perform regression
analysis (via a remote server) on the linked database that includes the
variables x1, x2, . . . , xp and y. dc-a cannot directly use the remote server
to gain information of the y-value associated with l, since the server would
detect l as a high leverage point and exclude it from the analysis. The split
leverage attack, which is designed to bypass this protection, is described
below.

Proposition 1 (Split leverage attack). 1. Assume that dc-a has com-
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plete information on the data matrix,

X =


x11 x12 · · · x1p
x21 x22 · · · x2p
...

... . . . ...
xn1 xn2 · · · xnp

 ,

associated with the independent variables, x1, x2, . . . , xp.

2. Assume that X contains a high leverage point l, and that dc-a uses its
knowledge of complete information on X to find l.

3. Next, suppose dc-a partitions the data matrix, X, into two disjoint
subsets X1 consisting of m rows of X and X2, consisting of the remaining
(n−m) rows of X. Both X1 and X2 contain data on all p independent
variables; however, X1 and X2 contain different data points.

4. Suppose also, that dc-a is able exploit complete information on X to
find X1,X2 such that X = X1 ∪ X2, X1 ∩ X2 = ∅, and neither X1 nor X2

contains a high leverage point. dc-a can also ensure that each of these
subsets contains the minimum number of points required to circumvent
other protections.

5. dc-a then uses the remote server to separately regress y on X1 and y
on X2.

6. Let β01,β11,β21, . . . ,βp1 be the estimates of the regression coefficients
obtained by regressing y on X1 and β02,β12,β22, . . . ,βp2 be the estimates
of the regression coefficients obtained by regressing y on X2.

7. Next, suppose dc-a uses its own computer to calculate ŷi1 = β01 +
β11xi1 + β21xi2 + · · · + βp1xip for each (xi1, xi2, . . . , xip) ∈ X1 and
ŷj2 = β02+β12xj1+β22xj2+· · ·+βp2xjp for each (xj1, xj2, . . . , xjp) ∈ X2.

8. Let ŷ1 = {ŷi1 : xi ∈ X1}, ŷ2 = {ŷj2 : xj ∈ X2} and ŷ = ŷ1 ∪ ŷ2.

9. dc-a can then use complete information on X, and its own computer
to regress the ŷ values on the entire set X.



4 Extensions and consequences of the split leverage attack M49

10. Then, the values of the regression coefficients of this final regression
model of ŷ on X are identical to those obtained by regressing y on X.

11. dc-a can thus overcome the protection against high leverage points and
obtain a regression model with a high leverage point l.

12. Since l is a high leverage point, the model accurately estimates the value
of y associated with l, resulting in unacceptable disclosure.

The proposition (specifically point 10) follows from a more general result
(Theorem 2), which is proved in Section 4. The viability and consequences of
this attack are also discussed in the next section.

4 Extensions and consequences of the split
leverage attack

The abs system has a number of protections in place to minimize the risk
of disclosure in various situations. The question, then, is whether any of the
existing protections might be sufficient to protect against the split leverage
attack presented in the previous section. The most interesting question in
this regard is whether perturbation of the regression coefficients might have
a protective effect against the split leverage attack. This question arose at
misg, but is yet to be considered. Another interesting question is whether the
measure of disallowing models with high correlation coefficient (R2 > 0.95)
might be sufficient to protect against the split leverage attack. This question
was also not considered at the misg. However, subsequent simulations were
performed using randomly generated datasets. The regression coefficients for
the randomly generated data and the split leverage attack were estimated
using Mathematica 8 [17]. An examination of the results of these simulations
suggested the following.

1. The regression on the original data set X, can be re-created (to a very
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high degree of precision) by the split leverage attack provided that the
subsets X1 and X2, into which X is partitioned, are disjoint.

2. If X contains a high leverage point, then it is possible to partition
the original data set into disjoint subsets X1 and X2, neither of which
contains a high leverage point, provided |X| > 6.

3. The split leverage attack appears to work even for data where the
correlation coefficient (on the full data set) is below 0.8.

4. The attack also appears to work when the correlation coefficient on
each of the subsets X1 and X2 is low (of the order of 0.3 or below).

5. Some simulations showed that the correlation coefficients of the regres-
sion models on the disjoint subsets X1 and X2 can be much lower than
on the original regression model on X.

6. The re-creation of the regression on the full data set appears to work
whether the full data set has a leverage point or not.

Point 3, above, suggests that the protection against models with high correla-
tion is not sufficient to protect against the split leverage attack. In addition,
points 3, 4, 5 and 6 suggest that it might be possible to overcome the pro-
tection against models with high correlation coefficient, by partitioning the
data into disjoint subsets. However, partitioning the data into subsets that
lowers the correlation coefficient for models on both subsets X1 and X2 may
be hard to achieve since it may require some information about the y-values.
Of course, the attacker may try to use brute force to find an appropriate
partition. It is unlikely that a brute force attack of this nature would be
computationally feasible. On the other hand, the attacker may be able to
gain partial information about the y-values through some kind of intelligent
sequential partitioning of the dataset. Such an attack has not yet been
explored. Point 6 is formally proved in the following theorem. Point 1 (the
split leverage attack) follows as a special case, in which the data set contains
a leverage point. Although points 3, 4 and 5 are not explicitly proved, the
follow implicitly from the theorem. The formal exploration of point 2 remains
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an open conjecture.

Theorem 2. Let X, Y be continuous random variables. The linear regression
of Y on X can be re-created as follows:

1. Partition X into two disjoint sets X1 and X2. Let Y1 be the y-values
associated with the x-values in X1 and Y2 be the y-values associated with
x-values in X2.

2. Perform regression on (X1, Y1); let Ŷ1 be the y-values predicted by this
regression.

3. Perform regression on (X2, Y2); let Ŷ2 be the y-values predicted by this
regression.

4. Let (X, Ŷ) = (X1, Ŷ1) ∪ (X2, Ŷ2).

5. Perform a linear regression on (X, Ŷ).

Then, regressing Ŷ on X yields the same equation as regressing Y on X.

This result is a little more general than the split leverage attack, since it does
not require the presence of a high leverage point. This could be an important
result in information security, since it shows how to reconstruct a regression
model on a data set, by developing models on subsets of the data. However, it
may not be of much interest to statisticians since it does not appear to have
any direct application to statistics. In spite of this, Wetherill [16] presents a
number of results similar to this one, in a section on sub-model analysis. If
these results on sub-model analysis could be re-interpreted in the context of
information security, then they could potentially be used to refine and improve
the split leverage attack, or to develop new attacks on linked databases.

We present the proof of Theorem 2 below, and refer the reader to Anton and
Rorres [1] or any other standard book for the details of the linear algebra.
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Proof: Let X = {xT1 , xT2 , . . . , xTn} be a set of row vectors of length m, and
let Y be represented by y, a vector of length n. Let M be the matrix

M =


1 xT1
1 xT2
...

...
1 xTn

 .

Then the coefficients of the least squares regression of Y on X are

v = (MTM)−1MTy. (1)

Suppose that the set N = {1, 2, . . . ,n} is partitioned such that A ∪ B = N,
A ∩ B = ∅ where X1 = {xi | i ∈ A} and X2 = {xi | I ∈ B}. Let

P =


1 xTi
1 xTj
...

...
1 xTk

 such that i < j < k ∈ A,

Q =


1 xTi
1 xTj
...

...
1 xTk

 such that i < j < k ∈ B.

Let Y1 be represented by the vector

φ =


yi
yj
...
yk

 such that i < j < k ∈ A,
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and Y2 be represented by the vector

ψ =


yi
yj
...
yk

 such that i < j < k ∈ B.

Then the coefficients of the least squares regression of Y1 on X1 are

vA =(PTP)−1PTφ,

and the coefficients of the least squares regression of Y2 on X2 are

vB =(QTQ)−1QTψ. (2)

Let Ŷ be represented by the vector ζ such that

ζi =

{
Mi · vA if i ∈ A ,

Mi · vB if i ∈ B ,

where Mi is the ith row of M.

Without loss of generality assume that the rows of M and corresponding
entries of y have been arranged such that

M =

[
P

Q

]
and y =

[
φ
ψ

]
.

Consequently

ζ =

[
PvA
QvB

]
Note that

MTζ =
[
PTQT

] [PvA
QvB

]
=
[
PTPva +QTQvB

]
(3)
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and

MTy =
[
PTQT

] [ψ
φ

]
=
[
PTφ+QTψ

]
. (4)

Consider φ, then

vA =(PTP)−1PTφ, (5)
(PTP)−1PTPvA =(PTP)−1PTφ, (6)

PTPvA =PTφ. (7)

A similar argument shows that

QTQvB = QTψ. (8)

From equations (3), (7) and (8)

MTζ =
[
PTφ+QTψ

]
=MTy. (9)

Hence

(MTM)−1MTζ = (MTM)−1MTy = v. (10)

Hence the least squares regression equation of Ŷ on X is identical to the least
squares regression equation of Y on X. ♠

We conclude this section with a discussion of possible defences against the
split leverage attack. The split leverage attack will only re-create regression
equations—not the original data. So if the regression output from the server
is perturbed, then it would only re-create the perturbed y-values. In theory,
this suggests that perturbation may provide some protection against this
attack. However, even when the regression coefficients are perturbed, the
regression model can be expected to predict the y-value for a high leverage
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point with a high level of accuracy. That is why regressions with leverage
points are disallowed.

Since it is believed that protection against leverage attacks requires a measure
in addition to perturbation, it is unlikely that perturbation alone will be
sufficient to protect against the split leverage attack, which bypasses the
existing protection against leverage attacks. On the other hand, it is possible
that the dropping of random data points from all regressions (as a protection
measure) could provide some protection against the split leverage attack, since
it could result in the high leverage point being dropped from the subsets X1

and X2. Alternatively, since the attack requires disjoint sets, it may be
possible to prevent the attack by randomly adding a few data points to
all regressions performed on the server. The data points would need to be
carefully selected to have x-values that are close to the ones in the data
set that the attacker/researcher is interested in. Another alternative worth
exploring might involve adding a few phantom data points (not real data)
to make marginal changes to the regression coefficients in all analyses. The
addition of these phantom data points could have the effect of preventing the
partitioning of the data into disjoint sets. Of course, if an attacker is able
to find an appropriate way to adjust for the fact that X1 ∩ X2 6= ∅, then the
addition of data points may not be very useful.

5 Conclusions and future directions

As with all information security problems, protecting against disclosure is
likely to be a cat and mouse game between the integrating authority and
the attacker. Even if the integrating authority has unlimited resources, it
may be impossible to anticipate all possible methods of attack and to provide
protections against them. The misg was able to provide the abs with some
new issues to consider in improving the security of their system. These
include:
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• a new attack that exposes a potential vulnerability in the system;

• considering various methods to protect against the new attack;

Consideration of these issues present several new directions for future work:

• a formal investigation of the structure of data sets which contain a
leverage point, that can be partitioned into subsets which do not contain
leverage points;

• examining whether a dataset can be systematically partitioned to over-
come the defence against models with high correlation;

• determining whether the existing defences are sufficient to protecting
against the split leverage attack;

• developing new protections against the split leverage attack.
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