
ANZIAM J. 45 (E) ppC350–C363, 2004 C350

Vectorised simulations for stochastic
differential equations
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Abstract

Often when solving stochastic differential equations numerically,
many simulations must be generated. For example, this approach is
required when computing the statistics of the numerical solution, or
when verifying the strong order of convergence of a numerical method
(when a range of step sizes is also required). Such computational effort
can be very slow, and this paper discusses an approach to vectorise the
simulation calculations and hence produce an efficient implementation.
The numerical simulations here were performed in Matlab but the
techniques are equally applicable in a high performance computing
environment using, for example, Fortran 90.
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1 Introduction

Stochastic differential equations (sdes) model physical systems where there
are random effects. For example, application areas include genetic regulation,
chemical kinetics and hydrology. Because such systems of differential equa-
tions cannot usually be solved analytically, numerical methods are required
and these must be designed to perform with a certain order of accuracy (this
concept is defined shortly).

In the following, W (t) is a Wiener process which satisfies the properties

W (0) = 0 , E [W (t)] = 0 , for all t

Var [W (t)−W (s)] = t− s , t > s ,

and has independent increments on non-overlapping intervals. Thus W (t) is
normally-distributed with mean 0 and variance t, written N(0, t). A Wiener
process (named after N. Wiener) is sometimes called Brownian Motion, which
is a term used to describe the phenomenon of the erratic behaviour of a
particle in a liquid, acted on by random impulses, in the absence of friction.
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A general sde driven by d Wiener processes is

dy = g0(y) dt +
d∑

j=1

gj(y) dWj(t) , y(t0) = y0 , t ∈ [t0, T ] , y ∈ Rm. (1)

This is written in integral form as

y(t) = y0 +

∫ t

t0

g0(y(s)) ds +
d∑

j=1

∫ t

t0

gj(y(s)) dWj(s) . (2)

The d integrals in (2) are stochastic integrals with respect to a Wiener pro-
cess, but the integrals are interpreted differently depending on the underlying
rules of calculus being used. In particular, equation (1) can be interpreted
in Itô form or Stratonovich form, depending both on modelling considera-
tions and the choice of calculus. Note that it is possible to switch from one
representation to the other using the relationship (given here for d = 1)

ḡ0(y) = g0(y)− 1

2

∂g1

∂y
(y)g1(y) .

Then equation (1) is in Stratonovich form when ḡ0 is used in place of g0.

In some application areas it is important that the sample paths of the
numerical approximation be close to the strong solution of an sde; such tra-
jectories can provide considerable insight into the dynamics and qualitative
behaviour of the sde. In other situations weak solutions are required, and so
many trajectories are computed and statistics/moments of the distribution
of the solution are obtained. This is discussed in some detail in [2].

An interesting example of an sde is in filtering theory, where a signal is
sent through a noisy channel and has to be filtered from noisy measurements
(see [2] for further details). An important fm demodulator is the phase-
locked loop (pll) [5]. The system of equations for the pll model is

dy1 = −
(

3
√

cy1 + sin y2

)
dt +

√
c(dW1 − dW2) ,

dy2 =

(
1

2
y1 − sin y2

)
dt−

√
c dW2 ,
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where y1 represents a phase error and y2 represents a frequency error. In
the stochastic case, as c increases, cycle slips occur and the trajectories can
cross multiple boundaries before re-locking—but then the pll is no longer
an efficient demodulator.

In designing numerical methods for sdes there are two types of order—
strong and weak. In this paper, only strong order is relevant. Formally, if
ȳN is the numerical approximation to y(tN) after N steps with constant step
size h = (tN − t0)/N , then ȳN is said to converge strongly to y with strong
global order p if there exists C > 0 (independent of h) and δ > 0 such that

E [‖ȳN − y(tN)‖] ≤ Chp , h ∈ (0, δ) .

Note that p can be fractional since the root mean-square order of the Wiener
process is h1/2.

A numerical method of a certain order of convergence is derived by ex-
panding both the exact solution and the numerical solution of an sde in a
stochastic Taylor series and comparing the terms—the order of accuracy of
the method depends on the number of terms that match.

For the sde (1), the Stratonovich Taylor series expansion begins

y0 +
d∑

j=0

Jjgj(y0) +
d∑

i=0

d∑
j=0

Jij

(
g′jgi

)
(y0) + · · · , (3)

where Ji and Jij (using ◦ to denote Stratonovich calculus) are defined by

J
(n)
i =

∫ tn+1

tn

◦dWi(s) , J
(n)
ij =

∫ tn+1

tn

∫ s2

tn

◦dWi(s1) ◦ dWj(s2) .

Equation (3) could be used directly as a numerical procedure to approximate
the solution of a sde but requires the evaluation of derivatives. A derivative
free approach is developed through the construction of a general stochastic
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Runge-Kutta (srk) method, defined by

Yi = yn +
d∑

k=0

s∑
j=1

Z
(k)
ij gk(Yj) , i = 1, . . . , s ,

yn+1 = yn +
d∑

k=0

s∑
j=1

z
(k)
j gk(Yj) .

(4)

Here Y1, . . . , Ys represent the internal stages of the method, yn+1 represents
the update of the numerical solution at the end of the current step, and
Z

(k)
ij and z

(k)
j are random variables based on these Stratonovich integrals.

Comparing the expansion of the method with (3) yields order conditions
that the method must satisfy to achieve the required accuracy.

A 2-stage srk method (designated R2) of strong order 1 is

Z(0) = h

(
0 0
2
3

0

)
, Z(1) = J1

(
0 0
2
3

0

)
, (5)

z(0)> = h
(

1
4

3
4

)
, z(1)> = J1

(
1
4

3
4

)
,

and just requires the random variable J1 (the Wiener increment), while a
4-stage srk (E1, requiring J1 and J10) has strong local order 1.5:

Z(0) = h


0 0 0 0
2
3

0 0 0
3
2
−1

3
0 0

7
6

0 0 0


z(0)> = h

(
1
4
, 3

4
,−3

4
, 3

4

)
z(1)> = J1

(
−1

2
, 3

2
,−3

4
, 3

4

)
z(2)> = J10

h

(
3
2
,−3

2
, 0, 0

)

Z(1) = J1


0 0 0 0
2
3

0 0 0
1
2

1
6

0 0

−1
2

0 1
2

0

 Z(2) = J10

h


0 0 0 0
0 0 0 0

−2
3

0 0 0
1
6

1
2

0 0

 .

(6)

To implement these methods, J1 and J10 must be simulated at each step.
In general, note that Ji ∼ N(0, h) and so is sampled as

√
hu where u ∼
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N(0, 1) . Also, Ji and Ji0 are correlated, and so Ji0 is computed efficiently
using the formula Ji0 = h

2

(
Ji +

√
h/3 u1

)
where u1 ∼ N(0, 1) . However, for

higher order methods with representations from Jij (i 6= j), the simulation
of such stochastic integrals (at each step) is much more complex, and this is
discussed in Section 3.

For general d, methods R2 and E1 both reduce to strong order 0.5, be-
cause the methods need a representation from all the Jij to perform with
higher order. So the natural extension to arbitrary d (by replicating R2 and
E1 across all the stochastic components) does not maintain order unless the
noise is commutative, that is, (g′igj) (y) =

(
g′jgi

)
(y) , i, j = 1, . . . , d . This is

because, for commutative noise,

Jijg
′
jgi + Jjig

′
igj = (Jij + Jji) g′jgi = JiJjg

′
jgi ,

and so the method does not need representation from either Jij or Jji.

To verify that a numerical method is performing with the correct order of
accuracy, many trajectories must be computed and then all the trajectories
are repeated but with half the step size; the entire step size halving process
is repeated several times. The numerical results at the endpoint are then
compared, for each step size used, so that the order of accuracy of the method
is determined.

This procedure can be extremely time consuming and this has provided
the motivation for developing a vectorised implementation of stochastic nu-
merical methods. Although this paper details just the vectorised matlab
implementation, the paradigm extends to a high performance computing en-
vironment. In section 2 we describe the particular functions used in the
matlab implementation of the above srk methods and describe the vec-
torisation of these methods; numerical results are presented. In section 3
we discuss issues that arise in a multi-Wiener process sde system (d > 1)
and present an alternative method (cd) that is appropriate for any d; the
vectorisation procedure is extended to allow a vectorised implementation of
this style of method, and numerical results are presented. Some issues that
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arise in approximating the higher order stochastic integrals (for example,
Jij) are discussed. In section 4, we present a large-scale sde system and
demonstrate the performance of sequential and vectorised implementations
on this problem. Section 5 presents conclusions as well as suggestions for
future research.

2 A vectorised implementation

A non-vectorised implementation of the above srk methods proceeds step-
by-step, for each trajectory. For the vectorised approach, we still implement
the method step-by-step but now we do this for all N trajectories simulta-
neously. We also include vectorisation across the dimension m of the sde in
this implementation (that is, all dimensions for all trajectories are computed
simultaneously). An alternative approach is to vectorise across the method
itself, but that is left for future research.

Thus, for i = 1, . . . , s, the implementation computes [Yi,1, . . . , Yi,N ]> and
then calculates the update stage: yn+1,1

...
yn+1,N

 =

 yn,1
...

yn,N

+
∑

k

∑
j

z
(k)
j

 gk(Yj,1)
...

gk(Yj,N)

 .

In the coding, we need to use several vectorisation functions that are
available in matlab. Firstly there is K = kron(X, Y ) , which returns the
Kronecker tensor product of matrices X and Y . If X is m×n and Y is p×q,
then K = kron(X,Y ) is the mp× nq matrix x11Y x12Y · · ·

x21Y x22Y · · ·
...

...
. . .

 .
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The reshape function is used frequently in this vectorised implementation
to rearrange the elements in the work arrays. For example, a 3×2 matrix A is
reshaped into a 2×3 matrix B, where the elements of B are taken columnwise
from A:

A =

 a11 a12

a21 a22

a31 a32

 , B = reshape(A,2,3) =

(
a11 a31 a22

a21 a12 a32

)
.

The colon operator is used extensively for processing arrays. The notation
A(:, j) denotes the jth column of A, whereas A(i, :) is the ith row. The default
stride between elements is 1, but this can be overwritten to skip intermediate
elements when required.

The sum function is also used in this implementation. Specifying sum(A,n)
will sum the elements of A in the nth dimension. For example,

A =

(
a11 a12

a21 a22

)
, B = sum(A,2) =

(
a11 + a12

a21 + a22

)
.

In the vectorised implementation of the above srk methods (see equa-
tion (4)), the vectors now have length N × m (that is, the number of tra-
jectories times the dimension of the sde). The work array g0(Y ) has size
(N ×m)× s where s is the number of stages in the srk method, while g(Y )
represents all the stochastic components and so is a 3D array (N×m)×d×s.
The implementation commences by obtaining all the random samples re-
quired (for all the steps) using the smallest step size h and storing them in
2D arrays (of dimension Nd×#steps):

J1 =
√

h randn(Nd, #steps) , J10 =
h

2

(
J1 +

√
h

3
randn(Nd, #steps)

)
.

All the trajectories of the numerical approximation are calculated with
this h-value. Then the trajectories are repeated but with step size 2h (and
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Table 1: Timings for Example 1
Implementation method time taken
sequential R2 219.00 seconds
vectorised R2 1.77 seconds
sequential E1 377.00 seconds
vectorised E1 2.28 seconds

then 4h and so on, depending on how many sets of trajectories are required).
The same Brownian path must be followed for each step size used; starting
with the smallest h and successively doubling the step size leads to an efficient
way of “consolidating” the random samples while maintaining the path:

J10

(
:, i

2

)
= J10 (:, i− 1) + J10 (:, i) + hJ1 (:, i− 1) ,

J1

(
:, i

2

)
= J1 (:, i− 1) + J1 (:, i) .

The consolidated values are stored in the first 1
2
(#steps) columns. Note that

these relationships preserve the mean and variance of J1 and J10 between the
Brownian paths.

To verify the order of convergence of a numerical method, we compare
the errors at the endpoint of the integration interval for each of the step
sizes used. The ratio of these errors provides an estimate of the order of
convergence. When the actual solution of the sde is not known, then it is
approximated by using the numerical method with an even smaller step size
(for example, 1

4
×smallest h, for the purposes of this exercise). The speed-ups

obtained are demonstrated by the following example.

Example 1 The following sde appears in [4].

dy = −α(1− y2) dt + β(1− y2) ◦ dW , y(0) = y0 ,

y(t) =
(1 + y0) exp (−2αt + 2βW (t)) + y0 − 1

(1 + y0) exp (−2αt + 2βW (t)) + 1− y0

,

y0 = 0 , α = 1 , β = 2 , t ∈ [0, 1] .



2 A vectorised implementation C359

The step sizes used were h = 1
200

, 1
100

, 1
50

and 1
25

with 500 simulations each,
and the timings (produced on a Dell Precision 530, Pentium IV, 1.7GHz)
are presented in Table 1.

3 Multi-Wiener process noncommutative

SDEs

The srk methods R2 and E1 described in Section 2 are suitable for sdes
with one Wiener process or, in the multi-Wiener process case, for sdes with
commutative noise. However, when the noise is non-commutative, these
methods only perform with strong order 0.5 as the methods do not have
any representation from the higher order stochastic integrals Jij. So a new
style of method is required; the method used here is based on the Taylor
series expansion but with the derivatives approximated by central differences.
The method (cd) (see [1]) has strong order 1 and is suitable for arbitrary
dimension d.

However an implementation issue here is the sampling of the Jij, i, j =
1, . . . , d . One approach is to approximate Jij by a Lévy area, using 2k sub-
intervals (the larger k, the better the approximation but the calculations
are more computationally intensive). The approach used here is to approx-
imate Jij by a truncated Fourier series — but how many terms (p) should
be included in the series? Kloeden and Platten [4] suggest that p should be
proportional to 1/h, but Wiktorsson [6] (by looking at the truncated terms)
can justify p being proportional to 1/

√
h. So depending on the step size

required, there can be significant computational effort also in the Fourier
series approach.
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The method cd is (with J0 = h):

Y1 = yn ,

Yi+1 = yn + J0g0(Y1) +
√

h
θi

2
gi(Y1) , i = 1, . . . , d ,

Yi+d+1 = yn + J0g0(Y1)−
√

h
θi

2
gi(Y1) , i = 1, . . . , d ,

yn+1 = yn +
d∑

i=0

(
Jigi(Y1) +

d∑
j=1

Jji√
hθj

[gi(Yj+1)− gi(Yj+d+1)]

)
.

For implementation with d = 2, we used θ1 = 1 , θ2 = 1
2
. We describe next

the vectorisation of this method but note also that there is further scope for
parallelism as all the internal stages depend only on Y1. The vectorisation
procedure described in Section 2 applies here also, but there is the extra
requirement of vectorising the Jij and their consolidation. This is achieved
by storing the Jij in blocks within the large array JJ :

JJ =

 (J11) · · · · · ·
(J21) (J22) · · ·

...
...

. . .

 .

Each Jij block is of dimension N (#trajectories) by #steps. During the
implementation, for the kth step, we need to access the kth column of each
Jij block—hence the requirement for the stride to equal the number of steps
rather than the default value 1. Because of the relationship Jij + Jji = JiJj ,
the block upper triangular part of JJ does not need to be simulated.

Note that the definition of the sde must be spread across all the trajec-
tories so that its size and shape matches that of the work arrays used in the
implementation of the method. This is where the use of the Kronecker tensor
product and reshape functions are required.

Example 2 To demonstrate the speed-up obtained by vectorisation of the
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method cd, the following 2D linear sde with two Wiener processes was used:

dy = G0y dt + G1y ◦ dW1 + G2y ◦ dW2 ,

y(0) = ( 1 1 )> , t ∈ [0, 1] , h = 1
32

, 1
16

, 1
8
, 1

4
,

G0 =

(
−0.9 0.0
0.25 −0.5

)
, G1 =

(
0.75 0.0
0.0 −0.75

)
, G2 =

(
0.0 0.9
0.9 0.0

)
.

The sde is non-commutative, and an approximation to the solution was
obtained numerically using h = 1

128
. The sequential implementation of cd

required 40 seconds, while the vectorised implementation took 6 seconds.
The speed-ups are more substantial for larger problems.

4 A large-scale problem

We present here an example that integrates (in both sequential and vectorised
mode) a large-scale stochastic partial differential equation (spde) system
which has diagonal multiplicative noise in both space and time:

∂U

∂t
(t, x) = −γU(t, x) + β

∂2U

∂x2
(t, x) + σ

√
1− U(t, x)2 ζ(t, x) .

The constants γ, β and σ are positive, and the space variable x is not re-
stricted. Although x can be in R3 for this problem, we assume only one
spatial dimension—see [3]. With x ∈ [0, L] and ∆x = L

N+1
, and using a sec-

ond order central difference scheme for the second order partial derivative,
the spde is spatially discretised. Given U(t, 0) = U0 and U(t, 1) = UN+1 ,
the solution for the N interior points U = [U1(t), . . . , UN(t)]> is written in
N -dimensional vector form as

dU

dt
=

(
−γI +

β

(∆x)2A

)
U +

β

(∆x)2 (U0e1 + UN+1eN) +
σ√
∆x

B(U) ξ(t) .

Here the ξ(t) is a vector of independent white noise processes, matrix A is
tridiag(1,−2, 1), B(U) is the diagonal matrix with entries Bkk =

√
1− U2

k ,
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Table 2: Timings for the large scale problem of Section 4.
N R2-sequential R2-vectorised
2 12.25 seconds 0.172 seconds
4 23.64 seconds 0.360 seconds
8 46.28 seconds 0.672 seconds

16 92.11 seconds 1.390 seconds

and the ej are the unit basis vectors for RN . As this large-scale problem
has commutative noise, we use method R2 (for example) and replicate it
across the N stochastic components, while still maintaining strong order of
convergence 1. In fact this is an example of an sde with diagonal noise.

In this implementation, we set γ = 0 , β = σ = 1 and L = 1 . The
boundary conditions are U(t, 0) = 0 , U(t, 1) = 1

2
, and we choose N = 2, 4, 8

and 16. There were 500 simulations. See Table 2.

When working with spdes (and semi-discretisation), it is essential to
use sparse matrices in the vectorised implementation; this will also allow
sparse matrix calculations to be performed. For very large problems, memory
constraints may affect the results (even in sparse matrix mode); at this stage,
then, the implementation should be ported to a high performance computing
environment. Comparing the sequential implementation with the vectorised
implementation, we see in Table 2 consistent speed-up factors of 65–70.

5 Conclusions

In this paper we demonstrated that substantial speed-ups are possible by
vectorising the implementation of the numerical methods. Careful structur-
ing of both the method and the representation of the sde leads to an efficient
vectorised implementation of the numerical methods described in this paper,
and this approach is a useful tool for generating many simulations of the
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numerical solution. Another area for investigation is the technique of par-
allelisation across the method itself, and this will be the subject of a future
paper.
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