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Simulation of ancestral selection graphs for
Monte Carlo integration
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Abstract

An ancestral selection graph is a realization of an genealogy-process
model which incorporates natural selection. The space of ancestral
graphs is a countable union of spaces of unequal dimensions. We give
a Markov Chain Monte Carlo algorithm simulating ancestral selection
graphs. Output can be used to estimate expectations for functions
defined on the space of ancestral graphs.
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1 Introduction

We wish to compute the expected value E{h(x)} of some function h over
the domain Ω of a probability density f(x). Recall the basic Monte Carlo
procedure. We draw N samples xi ∼ f , i = 1, 2, . . . , N and form an es-
timate h̄ = 1

N

∑
i h(xi) of E{h(x)}. The samples are distributed according

to f , however they need not be independent. It is sometimes convenient to
use a correlated sequence of states from a Markov chain with state space Ω
and equilibrium f . If the Markov chain is geometrically ergodic, a central
limit theorem applies, and h̄ and its standard error provide a suitable esti-
mate and uncertainty measure. This is the basis of the Markov chain Monte
Carlo method for estimating expectations.

It is only since 1995 and the work of Green, that it has been feasible
to draw samples x ∼ f from generic densities defined on spaces for which
all states do not have equal dimension, so that the state vector has random
dimension. We wish to compute expectations in a probability distribution
defined over a certain class of graphs (ancestral selection graphs, see Figure 1
for an instance). The number of vertices varies from one graph to another.
Because each vertex is carries a real scalar parameter, the state dimension
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varies from one state to another. Densities of this kind arises in a class of
stochastic models of ancestry with natural selection.

In this paper we will define the density and state space of interest, and
show how it may be sampled using Markov chain Monte Carlo and the meth-
ods of Green [3]. This sampling scheme will be used in later work to estimate
expectations for quantities of interest. The density we treat can be sampled
in a much more straightforward way using the graph process by which it is
defined. However, the framework we give extends to cases involving data.
We expand on this point in Section 2.2. This is not the case for any direct
implementation of the graph process itself. Other simulation methods have
been given which are effective, in particular the importance sampling method
due to Slade [7]. These do simulate the process conditioned on certain types
of data, and will be more efficient than our mcmc methods for many cases
of interest. However, there remain data types (such as viral dna sequence
data) for which mcmc simulation is the only straightforward option. These
are cases in which there is no distribution ‘close’ to the posterior distribution
which can feasibly be sampled by direct methods to yield iid samples.

A phylogenetic tree T = (V,E) on a set A = {∞,∈,3 . . . , \} is a binary
tree with vertices V = VL ∪VA . Here VL is a set of n leaf vertices (each with
a distinct label from A) and VA is the set of internal vertices. Associated
with each vertex v ∈ V is a function B : V 7→ S , where S is a countable
state space and indicates a type at that vertex. If Bu 6= Bv , a change of type
has occurred along the edge between vertex u and vertex v.

Kingman [4] defined a stochastic process, the n coalescent, to model an-
cestral relations for a group of organisms n evolving without natural selection
in a larger background population of size N . Realizations of this process are
phylogenetic trees with n leaves. We are interested in a related process,
modelling two types of organisms S = {0, 1} evolving with natural selection.
The selective advantage of type 1 individuals over type 0 is represented by
supposing type 1 individuals have a higher birth rate. The offspring of an
individual is of a different type to its parent with probability µ, independent
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of the type of the parent. At a birth event offspring replace a randomly
chosen member of the population.

This selection model can be graphically represented by the so-called
biased-voter model. In the “diffusive limit”, N → ∞ , the random biased-
voter graph converges in distribution to a random graph process called the
ancestral selection graph. A full description of the biased-voter model and as-
sociated dual process can be found in the paper by Neuhauser and Krone. [5]

In Section 1.1 we give a description of the ancestral selection graphs as
introduced by Krone-Neuhauser [5]. A description of the space of ancestral
selection graphs is given in Section 1.2. We go into some detail, because
it is the nature of this space that warrants the novel Monte Carlo methods
presented in Section 2. In Section 2.2 we develop our motivation for studying
this problem, in more technical terms.

1.1 Ancestral selection graphs

The ancestral selection graph can be thought of as a list of coalescing and
branching events. We generate the graph from the present back into the past
(so time t increases into the past). Let the elements of A = {1, 2, . . . , n}
label a set of n particles. At a coalescent event, two particles merge resulting
in one particle, while at a branching event one particle splits into two. In
the process defined below, coalescent events dominate. The process stops the
moment the number of particles drop to one. It realizes a directed, connected
graph G = (V,E) . We call the branching and coalescing process itself the
ancestral selection graph process, {G(t)}. Let M denote the total number of
events in one realization. In Figure 1, M = 5 , n = 4 .

{G(t)} consists of two sub-processes, a set-valued process {A(t) : t ≥ 0},
denoting the set of particles at time t and a jump process {Rm : m ≥ 1},
giving the times at which events occur.
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Figure 1: Ancestral selection graph

Let t = R0 denote the time associated with the leaves. At time t = R0 ,
{A(t)} = A , the set of labels associated with the terminal nodes of the
graph. As branching and coalescing events occur the number of lineage labels
in this set may increase or decrease. For each t ≥ R0 , {A(t)} is a subset of
{1, 2, 3, 4, . . .}. Let |A(t)| denote the cardinality of the set A(t). The process
stops when the final coalescence occurs and |A(t)| = 1 .

The vertex at this time is called the ultimate ancestor (UA). The time
of the UA vertex is denoted TUA with TUA = inf{t : |A(t)| = 1} .

We now define the time dynamics in detail. Let Rm, m ≥ 1 be a time
at which either a coalescing or a branching event occurs. Let σ ≥ 0 be a
real positive constant. While |A(Rm−1)| = k , coalescing happens at rate

(
k
2

)
and branching happens at a rate σk/2. The time intervals {Rm−Rm−1} are
independent and exponentially distributed with rate parameter

(
k
2

)
+ σk

2
. If a

branching event happens at timeRm a random particle j branches resulting in
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an extra particle with label n+m, so that A(Rm) = A(R−
m)∪{n+m} . When

two random ancestors i, j coalesce with i < j , then A(Rm) = A(R−
m)\{j}

and the resulting ancestor is labelled i.

The selection parameter σ determines the amount of branching in the
ancestral graph. If σ = 0 the ancestral selection graph collapses to the
n coalescent of Kingman. Large values of σ results in many branching events.

1.2 The space of ancestral selection graphs

In this section we define a probability space, (Γ,F ,P), where Γ is the sample
space of all ancestral graphs, F is a suitable σ-algebra of subsets of Γ and
P is a probability measure on Γ.

For a graph g ∈ Γ , let Vc ⊂ VA be the set of vertices where coalescing
of two edges occur, Vb = VA \ Vc the set of vertices where an edge branches
and VL the set of leaf tips, that is, the set of vertices representing the data,
Vg = Vc ∪ Vb ∪ VL . We define corresponding sets of edges, Eg = Eb ∪ Ec ,
with Eb the set of edges branching at the top andEc the set of edges coalescing
at the top (“up” is into the past, increasing t). Let Nc denote the number
of coalescing events and Nb the number of branching events. Then Nc =
n+Nb − 1 .

An ancestral selection graph g is a directed graph. Associated with each
vertex v ∈ Vg is a time tv, measured in years, increasing from the leaves to
the root vertex of the graph (UA). Edge 〈v, w〉 ∈ Eg is directed from the
“child” v to w, the “parent”, so our convention is tv ≤ tw .

For each vertex, v ∈ Vg , let din and dout denote the in-degree and the
out-degree. Define the set of all admissible ancestral graph topologies on
Nb branching vertices and n leaves as ΓNb,n = {(Vg, Eg) such that for v ∈ VL ,
u ∈ Vb and w ∈ Vc , the respective degrees are din(v) = 0 , dout(v) = 1 ,
din(u) = 1 , dout(u) = 2 , din(w) = 2 , dout(w) = 1} . Let tA denote the
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ordered set of times associated with the vertices v ∈ VA . Let

χV,E = {tA : tA ∈ [R0,∞)Nb+Nc and for 〈i, j〉 ∈ Eg, ti < tj} ,

denote the space of vertex times for a given topology.

The space Γ of selection graphs is then

Γ =
∞⋃

Nb=0

⋃
{V,E}∈ΓNb,n

⋃
tA∈χV,E

{(V,E, tA)} .

For g ∈ Γ let g = (Vg, Eg, tA(g)) be an ancestral selection graph with M =
Nb +Nc ancestral vertices. Let ν(tA) denote the element of volume in χVg ,Eg

so that
dν(tA) = dt1dt2dt3 · · · dtM .

The element of measure dg is dν(tA(g)) with counting measure over distinct
topologies.

For each set B ∈ F let P(B) give the probability that any given re-
alization G = g of the ancestral selection graph process is in B, that is,
P(B) = Pr{G ∈ B} . The distribution P has a density π(g) with respect to
the measure dg, so that P(dg) = π(g)dg , where

π(g) =
(σ

2

)Nb
Nb+Nc∏
m=1

e−ρmτm ,

ρm =
(

km

2

)
+ σkm

2
, km is the number of lineages in the graph between event m

and event m+ 1, and τm is the time between events m and m+ 1 .

In order to compute the expectation of a state function f : Γ → < ,
for example f(g) = tUA(g) , the time to ultimate coalescence, we compute
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EG{f(g)} =
∫

Γ
f(g)π(g)dg , that is,∫

Γ

f(g)π(g) dg

=
∞∑

Nb=0

∑
{V,E}∈ΓNb,Nc

∫
χV,E

f(V,E, tA)π(V,E, tA) dt1dt2 · · · dtNb+Nc .

In the next section we show how to evaluate such expressions numerically
using Markov chain Monte Carlo averaging.

2 Sampling ancestral selection graphs

2.1 Metropolis-Hastings algorithm

Using the Metropolis-Hastings algorithm we construct a Markov Chain {Gn},
n = 0, 1, 2, . . . of random variables converging (geometrically) to the equilib-
rium density π on Γ.

The Metropolis-Hastings algorithm consists of two steps. Suppose the
chain is in state Gn = g . First, draw a candidate state g′ in the following
way. Draw uniform random variates u = (u0, u1, u2, . . .) according to some
fixed simple density q and compute g′ = ψ(g, u) , where ψ is a fixed mapping.
We are to some extent (details below) free to choose q and ψ. We suppose
there is unique u′ = (u′1, u

′
2, . . .) such that g = ψ(g′, u′) . The new state is

accepted with probability α(g′|g), where

α(g′|g) = min

[
1,
π(g′)

π(g)

q(u′)

q(u)

∣∣∣∣∂(g′, u′)

∂(g, u)

∣∣∣∣] (1)

If the new state is accepted, Gn+1 = g′ , else Gn+1 = g .
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The above expression for the acceptance probability is needed in the vari-
able dimension setting (but is convenient in any case). It is due to Green [3].
Some details of the algorithm may be clarified in the example below.

Roughly speaking, the density q and the mapping ψ must be chosen so
that the Markov chain is irreducible on Γ. Since Γ is continuous we need
the chain to be π-irreducible (in the sense of [8]). A proof that this property
holds for the chain below is straightforward though lengthy. The above form
for the acceptance probability ensures the Markov chain is reversible with
respect to π(g). It follows that the sequence {Gn}, n = 0, 1, 2, . . . is ergodic
with unique equilibrium distribution π. The Metropolis-Hastings birth-death
process we describe below is similar to that presented in [2], one of the first
instances of this type of Markov chain Monte Carlo.

2.2 Posterior distribution

Let D denote data, observed at the leaf tips of the tree. This data is a
realization of a type mutation process which propagates down the graph
from the ultimate ancestor. The leaf-data is informative of graph structure,
since leaves with a recent common ancestor are likely to have similar type
values. All parameters of the mutation process are assumed known.

Consider the problem of recovering the graph g from leaf data D. The
posterior density P(g|D) contains all available information concerning g. The
posterior density, is proportional to the product of two terms, a likelihood
function, P(D|g), and the prior density π(g). In a Monte-Carlo approach we
summarize P(g|D) using samples drawn from P(g|D).

When we write a computer program implementing Markov chain Monte
Carlo for this problem a very large part of the work is the problem of rep-
resenting the evolving graphical state, and designing and implementing re-
versible mcmc updates that act on the graph. In other words, the mcmc
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simulation of g ∼ π(g) is a large part of the problem of making mcmc sim-
ulation of g ∼ P(g|D). The transition matrix of a mcmc algorithm for the
prior density can be used as a proposal density for an mcmc simulation of the
full posterior Note that this is quite different from, and much more efficient
than, a rejection algorithm using the prior to generate iid draws which are
rejected by the likelihood. We are drawing from a transition matrix, so the
proposed state differs at just a few nodes from the current state.

Perfect sampling using coupling from the past was used by Fearnhead [1]
to simulate the joint distribution P(g,D). The Fearnhead algorithm is in-
spired by, but differs radically from, the original perfect sampling by coupling
from the past, due to Propp and Wilson [6]. Almost all perfect sampling al-
gorithms to date need the mcmc to be stochastically monotone relative to a
partial order defined on the space states. The lack of many applications of
perfect sampling to data reflects the fact that it is in general very difficult
to find such an order. Data tends to destroy the kind of simple symmetric
combinatorial structures needed for monotonicity.

2.3 Moves

A hybrid strategy, consisting of two moves, is implemented to move around
in the space of graphs. With probability p∗ = 1

2
one chooses to add an edge

while with probability p† = 1 − p∗ = 1
2

one deletes an edge from a graph g.
Variate u0 ∼ U(0, 1) is used to simulate this decision. The role of variates
u1, u2, . . . depends on the outcome of this first choice.
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2.3.1 Add an edge

e1 e2e1

g g′

M + 2

e2

31

2 4

M + 1

2 4

1 3

Suppose state g = (V,E, tA) has M = Nb +Nc ancestral vertices. Choose
two edges e1, e2 ∈ E uniformly at random with replacement. Without loss of
generality, suppose these are e1 = 〈1, 2〉 and e2 = 〈3, 4〉 . The edge above the
root can be chosen (so for the purpose of this algorithm it is convenient to
regard E as containing such an edge). Points corresponding to new vertices
with labels M + 1 and M + 2 are chosen on e1 and e2 using uniform random
variates u1 and u2, respectively. Let t′M+1 = t1 + (t2 − t1)u1 and t′M+2 =
t3 + (t4 − t3)u2 . Connect vertices M + 1 and M + 2 with an edge e. Let
τ1 = t2−t1 and τ2 = t4−t3 be the lengths of edges e1 and e2 respectively. The
new state g′ = (V ′, E ′, t′A) = (V ∪ {M + 1,M + 2}, Eg ∪ {e}, (tA, tM1 , tM+2) .

Notice tA ∈ [R0,∞)Nb+Nc while t′A ∈ [R0,∞)Nb+Nc+2 so the state dimen-
sion changes. The Jacobian for the transformation is the determinant of an
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M + 2×M + 2 matrix,

∂(g, u′)

∂(g, u)
=

t′1
t′2
t′3
t′4
...

t′M+1

t′M+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 . . . 0 0 0
0 1 0 0 0 . . . 0 0 0
0 0 1 0 0 . . . 0 0 0
0 0 0 1 0 . . . 0 0 0
...

...
...

...
...

...
... 0 0

1− u1 u1 0 0 0 . . . 0 τ1 0
0 0 1− u2 u2 0 . . . 0 0 τ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
t1 t2 t3 t4 t5 ... tM u1 u2

that is ∂(g, u′)/∂(g, u) = τ1τ2 . Because there are two ways to choose e1
and e2 (either order), the generation probability is q(u) = p∗2/|E|2 .

The generation process for the reverse move is given in the next Section,
so that the acceptance probability is

α(g′|g) = min

[
1,
π(g′)

π(g)

p†

p∗
1

2

|E|2

|E ′
D|
× τ1τ2

]
We have omitted two special cases. When one of the edges e1, e2 is the

edge above the root, an exponential density is used to choose the new vertex
location. The new vertex will be the new ultimate ancestor if the update is
accepted. The acceptance probability must be modified to account for the
revised proposal probability. Another special case is when e1 = e2 , a case
we call a “bubble”. In that case q(u) = p∗/|E|2 . The probability to propose
the reverse move is altered, also. The ratio q(u′)/q(u) becomes |E|2/|E ′

D|.
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2.3.2 Delete an edge

v

e

u

g g′

Let ED be the set of “deletable” edges in g. Directed edge e = 〈u, v〉
is in ED iff v ∈ Vc and u ∈ Vb . An edge e is drawn from ED. The new
state g′ is generated by deleting edge e from g. The generation probability
is q(u) = p†/|ED| . The acceptance probability is

α(g′|g) = min

[
1,
π(g′)

π(g)

p∗

p†
2|ED|
|E ′|2

× 1

τ1τ2

]
.

When one of the edges e1, e2 is the edge above the root and edges which
are part of bubbles are again special cases. There is a third special case for
deletion: if at any time t in the interval (tu, tv) the number of edges drops to
one, so |A(t)| = 1 then the candidate is rejected (so Gn+1 = g). The section
of the new graph g′ above t is above the ultimate ancestor of g′, and hence
g′ is not in Γ.

3 Discussion

Most of the work in implementing the mcmc goes into the careful planning
of the graph data structure used to represent an evolving graph with a time-
varying number of nodes. The vertex and edge birth and death operators
should be given a careful modular implementation, in order to avoid much
special case handling. The program was checked by making comparisons
with analytical results from Neuhauser and Krone [5].
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