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An always convergent method for finding the
spectral radius of an irreducible non-negative

matrix

R. J. Wood∗ M. J. O’Neill†

(Received 8 August 2003, revised 15 January 2004, corrected 7 Oct 2007)

Abstract

An always convergent method is used to calculate the spectral
radius of an irreducible non-negative matrix. The method is an adap-
tation of a method of Collatz (1942), and has similarities to both the
power method and the inverse power method. For large matrices it
is faster than the eig routine in Matlab. Special attention is paid
to the step-by-step improvement of the bounds and the subsequent
convergence of this method.
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1 Introduction

Calculating the spectral radius of a matrix is useful in a number of appli-
cations. Our particular interest has been in the area of mathematical eco-
nomics known as Input-Output Analysis, where finding the spectral radius
of a non-negative matrix is an important technique in verifying that a par-
ticular linear system has a unique positive solution (see Wood & O’Neill [8]).
Other applications include finding the roots of a polynomial equation using a
companion matrix, determining whether a Hessian matrix is positive definite,
finding the first few eigenvalues of a covariance matrix (an important statisti-
cal technique in factor analysis), calculating the 2-norm of a matrix ( that is,
‖A‖2 =

√
ρ(ATA)), verifying that a matrix is convergent (limn→∞A

n = 0 ,
which occurs if and only if ρ(A) < 1). It is acknowledged that some of the
applications listed above do not always involve non-negative matrices but,
when they do, the technique of this paper is appropriate. In this paper, con-
sideration is given to several methods for calculating the spectral radius, and
the advantages and disadvantages of each are considered.

2 The power method

This is a well-known method for approximating the dominant eigenvalue,
λ1, of a matrix. In this paper we restrict our discussion to that of a non-



2 The power method C476

negative matrix A. The method proceeds by choosing an initial vector q0
and performing the iterations qν = Aqν−1 = · · · = Aνq0 , ν ≥ 1 . Typically,
qν tends to the dominant eigenvector, and the dominant eigenvalue is usually
obtained by one of two methods:

1. calculation of λ
(ν)
1 where λ

(ν)
1 = uTAqν/u

T qν , and u is chosen so that
uT q0 6= 0 (see Conte and de Boor [3, p.192]). A smoother variant of
this replaces u by qv (see Golub & Van Loan [4, p.326]).

2. comparison of two corresponding non-zero components of qν+1 and qν
(see Atkinson [1, p.604]). The ratio of these components tends to λ1.

In order to avoid overflow and underflow appropriate scaling of qν is carried
out at each step. The convergence ratio of the method is typically |λ2/λ1|
where λ1 is the dominant eigenvalue and λ2 is a subdominant eigenvalue.
Difficulties can occur with the method if the matrix A has two eigenvalues of
maximum magnitude, or if λ1 and λ2 have approximately equal magnitudes.
Difficulties can also occur if q0 does not have a component in the direction
of x1, the dominant eigenvector. Convergence will then be to a subdominant
eigenvalue. It is worth noting in passing that rounding errors may intervene
and produce eventual convergence to λ1, even in this case (see Stewart [6,
p.343]). However, in the case of a non-negative matrix, a strictly positive
initial vector will always have a positive component in the direction of x1.
This is proved in the following theorem, which applies to any non-negative
matrix, reducible or irreducible.

Theorem 1 Let matrix A ≥ 0, with Jordan basis x1, x2, . . . , xn, correspond-
ing to the eigenvalues λ1 ≥ |λ2| ≥ · · · ≥ |λk| > |λk+1| > · · · > |λn|
have an initial m × m (1 ≤ m ≤ k) Jordan block associated with λ1. Let
q0 be an arbitrary positive vector which when written in terms of this basis is
q0 = γ1x1 + γ2x2 + · · ·+ γnxn . Then it is guaranteed that γm > 0 .
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Proof: A can be factorised in the form

A = X


 λ1 1 0

. . . 1
0 λ1

 0

0 J

X−1, where X = [x1, x2, . . . , xn] (1)

(See Halmos [5, p.112ff] for verification that the factorisation (1) is possible.)

If we pre-multiply both sides of (1) by X−1 = [ y1 y2 · · · yn ]
T

,
yT1
...
yTm
...
yTn

A =


 λ1 1 0

. . . 1
0 λ1

 0

0 J



yT1
...
yTm
...
yTn


Therefore yTmA = λ1y

T
m , which means yTm is a left eigenvector of A corre-

sponding to the dominant eigenvalue, λ1. (yTm 6= 0, since X−1 cannot have a
complete row of zeros.) Therefore yTm ≥ 0 , by the well-known generalisation
of the Perron-Frobenius theorem for any non-negative matrix (see Varga [7,
Theorem 2.7, p.46]).

Now, yTmq0 = yTm(γ1x1+· · ·+γmxm+· · ·+γnxn) = γm > 0 , since yTmq0 > 0.
yTmq0 = γm, since if x is a right eigenvector of A corresponding to λ1 and y is
a left eigenvector corresponding to λm 6= λ1, then yTx = 0 (see Stewart [6,
p.272]).

♠

The theorem can obviously be extended to any m×m Jordan block for λ1.
We now show how the Power Method performs on a selection of test matrices,
our aim in including these examples is to show the deficiencies of some rival
methods. In each case, q0 was chosen as [1, 1, . . . , 1].
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Example 2

A1 =

 0 1 0
0 0 1
1 4 5

 ,
λ1 = 5.7287 , λ2 = −0.3644 + 0.2045i , λ3 = −0.3644 − 0.2045i . This ma-
trix has a single dominant eigenvalue. Using Method 2 described above the
method converges in 6 iterations to the correct 4 decimal value. The iterates
are 10, 5.5, 5.7455, 5.7278, 5.7287 and 5.7287 .

Example 3

B =

 0 1 0
0 0 2
3 0 0


This matrix is cyclic, it has one real and two complex eigenvalues all of
which are equal in magnitude. In particular |λ1| = |λ2| = |λ3| = 3

√
6. Us-

ing Method 1, it does not converge, it cycles among the values 2, 1.8333,
and 1.6364.

Example 4

C =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0


λ1 = 1.2720 , λ2 = −1.2720 , λ3 = 0.7862i , λ4 = −0.7862i . This matrix is
also cyclic and has two dominant eigenvalues which are real, and of equal
magnitude but opposite sign. Using Method 1, it does not converge, it cycles
between the values 1.2361 and 1.3090 .

Example 5

D =

[
0.92 0.0001

0.0002 0.91

]
λ1 = 0.9200 , λ2 = 0.9100 . This matrix has two eigenvalues, which are
both real and approximately equal in magnitude. When Method 1 is applied
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to the above matrix, the method converges to the incorrect value of 0.9121
after two iterations. This occurs if an absolute value convergence criterion is
applied to the eigenvalue approximations. However, if a different convergence
criterion such as suggested in Golub & Van Loan [4, p.332] is applied then
such premature convergence is avoided, but convergence is very slow with
only one decimal place of accuracy after 100 iterations. The Golub & Van
Loan procedure uses an approximation to the left and right eigenvectors to
estimate the error at each step. The advantage of the Golub & Van Loan
procedure is that it avoids premature convergence to the wrong value.

Using Method 2 with the Golub & Van Loan convergence criterion, again
false premature convergence is avoided, but convergence is also very slow,
with only two decimal places of accuracy after 100 iterations.

Example 6

E =

 0.92 1 0
0 0.5 1
0 0 0.92


λ1 = 0.92 , λ2 = 0.92 , λ3 = 0.5 . This matrix has two dominant eigenvalues
which are real and equal. Furthermore, λ1 and λ2 occur in a 2 × 2 Jordan
Block. Admittedly, this matrix is reducible but can be made irreducible
by adding 10−6 to the (3,1) element. The effect of this perturbation can be
estimated by using the result from Stewart [6] quoted later in the Conclusion.
When Method 2 was applied with the Golub and Van Loan convergence
criterion, convergence was extremely slow with only one decimal place of
accuracy after 100 iterations. The purpose of the inclusion of this example
is to show that, even if a non-negative matrix is reducible, modifications can
be made to estimate its spectral radius. However, great care should be taken
in perturbing defective matrices. It is advisable to estimate the relevant
quantities in the above-mentioned result from Stewart [6]. This will give a
measure of the appropriateness of the perturbation.
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3 An alternative method

In order to overcome some of the above difficulties, a more robust method is
proposed. This method is based upon a result by Collatz [2].

Theorem 7 Let A ≥ 0 be an n×n irreducible matrix and q0 be an arbitrary
positive n-dimensional vector. Defining qν = Aqν−1 = · · · = Aνq0 , ν ≥ 1 , let

λν = min
1≤i≤n

q
(i)
ν+1

q
(i)
ν

and λ̄ν = max
1≤i≤n

q
(i)
ν+1

q
(i)
ν

,

where the superscript i represents the ith component of a vector. Then, de-
noting the spectral radius of A by ρ(A),

λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ ρ(A) ≤ · · · ≤ λ̄2 ≤ λ̄1 ≤ λ̄0 .

For the matrix A1 in Example 2, convergence is quite rapid. The bounds
on λν and λ̄ν , are (1,10), (1,10), (5.5,10), (5.5,5.7455), (5.7278,5.7455) and
(5.7278,5.7287). However, for the matrix B in Example 3, the bounds do not
improve from the initial bounds produced of (1, 3). An explanation of the
different behaviour of matrices A1 and B is provided in the following result
mentioned in Varga [7].

Theorem 8 In Theorem 7 both the sequences {λν}
∞
ν=0 and

{
λ̄ν
}∞
ν=0

con-
verge to ρ(A), from an arbitrary initial positive vector q0, if and only if the
irreducible matrix A ≥ 0 is primitive.

Noting that A1 is primitive and B is cyclic, we then have an explanation
of their different behaviours. The method of Theorem 7 is obviously closely
related to the Power Method, but it has the double advantage of being always
convergent when A is primitive, and also, of providing an estimate of the error
at each step and this overcomes the problem of premature convergence to the
wrong value. It is worth noting that a cyclic matrix can always be converted
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to a primitive matrix by means of a positive spectral shift. This is proved in
the next theorem.

Theorem 9 If the matrix A ≥ 0 is an n × n irreducible matrix then the
matrix qI + A, where q > 0, is primitive.

Proof: If A ≥ 0 and irreducible then it has a unique, positive eigenvalue
equal to its spectral radius ρ = ρ(A) by the Perron-Frobenius Theorem. If the
matrix qI is added to the matrix A, then this will produce another unique,
positive eigenvalue equal to the spectral radius ρ + q of the matrix A + qI.
Further there will be no other eigenvalues of A + qI with modulus equal
to ρ+ q. Hence the matrix A+ qI is primitive. ♠

Theorem 9 can be used to ensure convergence for Matrix B, by applying
the method of Theorem 7 to the matrix B1 = B + I , where I is the 3 × 3
identity matrix. B1 is then a primitive matrix and after 15 iterations, the
approximation ρ(B1) = 2.8171 is obtained.

Hence ρ(B) = ρ(B1)− 1 = 1.8171 . The question then arises as to what
might be an optimal shift to give the most favourable rate of convergence.
This is not easily answered except in the case of a real symmetric matrix.
As remarked by Stewart [6, p.342] the search for an optimal shift is not very
satisfactory in automatic computation. An alternative approach is adopted
in this paper. We apply the method of Theorem 7 to the matrix (qI −A)−1

instead of the matrix A. But first it is necessary to show that (qI − A)−1 is
primitive.

Theorem 10 If A ≥ 0 is an n × n irreducible matrix with ρ(A) < q , then
(qI −A)−1 is a non-negative irreducible matrix. Furthermore it is primitive.
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Proof: We first show (qI − A)−1 is non-negative. Since ρ(A) < q ,

(qI − A)−1 =
1

q

(
I +

A

q
+

(
A

q

)2

+ · · ·+
(
A

q

)n
+ · · ·

)
. (2)

Therefore, since A is non-negative, (qI −A)−1 is also non-negative. Further-
more, the series (2) must be irreducible since A is irreducible. We next show
the matrix (qI − A)−1 is primitive.

Since A ≥ 0 and irreducible with q > ρ(A) , the unique eigenvalue closest
to zero of (qI − A) is (q − ρ(A)); so 1/(q − ρ(A)) is the unique dominant
eigenvalue of (qI − A)−1 and hence its spectral radius. This proves that
(qI − A)−1 is primitive. ♠

Unfortunately, if A is reducible, (qI − A)−1 may also be reducible. Ex-
ample 11 shows such a case.

Example 11 Both A and (qI − A)−1 are reducible when q = 3 and

A =

[
1 1
0 1

]
, whence (qI − A)−1 =

[
0.5 0.25
0 0.5

]
.

Corollary 12 If A is an irreducible, non-negative matrix, and ρ(A) < q ,
then the method of Theorem 7 applied to the matrix (qI −A)−1 is certain to
converge.

Proof: Follows from Theorems 7, 8 and 10. ♠

In this method it is not necessary to explicitly calculate (qI − A)−1, but
merely calculate the solution of the linear system (qI − A)x = y at each
iteration, noting that the once only lu decomposition will suffice for each
iteration.

This method is obviously closely related to the Inverse Power Method (see
Stewart [6, pp.343–5]), but has several advantages: it is always convergent
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when A is irreducible and it gives an estimate of the error at each step.
It also has an advantage over the method of Theorem 7 in that it applies
to any irreducible, non-negative matrix, not just a primitive matrix. Since
ρ(A) ≤ ‖A‖∞ , choosing q > ‖A‖∞ will ensure ρ(A) < q . This method was
applied to Examples 2–6, with the following results:

• Example 2 converged in 17 iterations;

• Example 3 converged in 8 iterations;

• Example 4 converged in 9 iterations

• Example 5 converged in 2 iterations

• Example 6 had not converged after 100 iterations, but if q was reset to
the last upper bound, it converged in a further 14 iterations

All convergence was to the correct 4 decimal eigenvalue.

4 Conclusion

This paper presents an always convergent method for finding the spectral
radius of a non-negative, irreducible matrix. It is a method closely related
to the Power Method and the Inverse Power Method. However, it has ad-
vantages over both of these methods, viz certainty of convergence, a reliable
estimate of the error at each step and the ability to restart the iterations
in the case of very slow convergence. If the matrix A is reducible then con-
verging bounds do not necessarily occur. However, this can be overcome by
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adding to A the matrix

E =


0 ε 0 · · · 0
... 0

. . . 0

0
. . . ε

ε 0 · · · 0

,
for small ε > 0 . This ensures that A + E is irreducible, and the method of
this paper can be applied. An attendant difficulty is then whether the per-
turbation in matrix A significantly affects the spectral radius. To determine
the impact of this perturbation a result from Stewart [6, p.296] is helpful.
This result states that if λ is a simple eigenvalue of A with right eigenvector x
and left eigenvector y, with ‖x‖2 = 1 and yTx = 1 , and A is deflated using
an orthogonal matrix R such that

RTAR =

[
λ hT

0 C

]
, then |λ− λ′| ≤ ε‖y‖2 +

ε2

δ
+ ηO(ε2),

where λ′ is the corresponding eigenvalue of the perturbed matrix A+E. Also,
ε = ‖E‖2 , δ = ‖(λI − C)−1‖−1

2 and η = ‖h‖2 . So the numbers ‖y‖2, δ and η
give a measure of the condition of the simple eigenvalue λ. These numbers
were calculated for the dominant eigenvalue of 5000 randomly generated non-
negative matrices for each of the orders 5, 10, 20, 50, 100 and 200. In all but
a very few exceptional cases, ‖y‖2 was close to 1, δ was greater than 0.1 and
η less than 1, indicating that typically, the dominant eigenvalue of a non-
negative matrix is not greatly affected if the values in E are appropriately
small. Computational time is also an important factor in any method and
experiments have shown that, for matrices of dimension less than 200, the eig
routine in Matlab is faster; but beyond this dimension, the method of this
paper appears to be faster. This research is still proceeding and it is intended
to compare the method presented here with Krylov subspace methods. Also it
is planned to make time comparisons in a compiled language, namely Fortran.



References C485

References

[1] Atkinson, K. E. (1989). An Introduction to Numerical Analysis,
2nd edition, John Wiley and Sons Inc, Singapore. C476

[2] Collatz, L. (1942). Einschliessungssatz für die characteristischen Zahlen
von Matrizen. Math Zeit, 48, 221–6. C480

[3] Conte, S. and de Boor, C. (1980). Elementary Numerical Analysis,
3rd edition, McGraw Hill, New York. C476

[4] Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations, The
John Hopkins University Press, Maryland. C476, C479

[5] Halmos, P. R. (1958). Finite-dimensional Vector Spaces, D. Van
Nostrand Company, Inc, New Jersey. C477

[6] Stewart, G. W. (1973). Introduction to Matrix Computations, Academic
Press, New York. C476, C477, C479, C481, C482, C484

[7] Varga, R. (1962). Matrix Iterative Analysis, Prentice-Hall Inc,
Englewood Cliffs, New Jersey. C477, C480

[8] Wood, R. J. and O’Neill, M. J. (2002): Using the spectral radius to
determine whether a Leontief system has a unique positive solution,
Asia Pacific Journal of Operational Research, Operational Research
Society of Singapore, Singapore, 19, 233–247. C475


	Introduction
	The power method
	An alternative method
	Conclusion
	References

