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Quadratic pencil pole assignment by affine
sums
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Abstract

Differential equation models for damped vibrating systems are as-
sociated with quadratic matrix eigenvalue problems. The matrices
in these systems are typically real and symmetric. The design and
stabilisation of systems modelled by these equations require the de-
termination of solutions to the inverse problem which are themselves
real, symmetric and possibly with extra structure. In this paper we
present a new method for pole assignment to a quadratic pencil by us-
ing affine sums. The method extends the work of Lancaster and Dai
(1997) in which a similar problem for the generalized inverse eigen-
value problem is solved.
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1 Introduction

Applying separation of variables v(t) = zeλt , z a constant vector, to the
second order matrix differential equation

Mv′′ + Cv′ + Kv = 0 , (1)

where a prime denotes differentiation with respect to time, leads to the prob-
lem of finding the eigenvalues and eigenvectors of the quadratic pencil

P (λ) = λ2M + λC + K . (2)

The scalar λi is called an eigenvalue, and the corresponding vector zi 6= 0 is
called an eigenvector of P , if they satisfy P (λi)zi = 0. Here, we will assume
that M , C and K are all in Rn×n (real, n × n matrices), symmetric and
furthermore, that M is positive definite. Such pencils arise in the analysis
of damped vibrating systems[3, e.g.].

In the direct quadratic eigenvalue problem we know the matrices M ,
C and K and we seek the spectral properties of P — the 2n scalars λi and
their corresponding eigenvectors zi. The spectrum σ (P ) = {λi}2n

i=1 of such
a pencil forms a self-conjugate set, as do the set of eigenvectors, because the
matrices here are real.
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For undamped systems C is a zero matrix and the problem reduces to
the generalized eigenvalue problem in which the pencil is made linear P (µ) =
K − µM by the substitution µ = −λ2 . Since M is positive definite, this
pencil has n real eigenvalues and n linearly independent eigenvectors.

In the inverse problem we seek the matrices M , C and K, if they ex-
ist, which are such that the quadratic pencil they define has a prescribed
spectrum. The fact that this spectrum contains complex elements adds a
difficulty not present in the undamped case.

Inverse problems have become important in the theory of vibration and an
excellent coverage of the field is to be found in [2]. Some affine sum methods
for the inverse standard eigenvalue problem, where M vanishes and C is an
identity are to be found in [1] and an affine sum method for the generalized
inverse eigenvalue problem where C vanishes is dealt with in [4].

In this paper we present a new affine sum method for determining matrices
C and K, if such matrices exist, which together with the given matrix M
define a quadratic pencil P with a prescribed self-conjugate spectrum. More
precisely, we address

Problem 1 Given

1. M ∈ Rn×n symmetric, positive definite,

2. {Ck}nk=0, {Kk}nk=0, Ck, Kk ∈ Rn×n, symmetric,

3. S = {µk}2n
k=1, a self-conjugate set of scalars.

Define

C = C0 +
n∑
k=1

αkCk , K = K0 +
n∑
k=1

βkKk . (3)

We seek real scalars {αk, βk}nk=1 , if they exist, which are such that the pen-
cil (2) has spectrum σ (P ) = S .



1 Introduction C595

To avoid a problem where the number of free parameters degenerates we
will assume that the n matrices [Ck,Kk] are linearly independent in the
space of n× 2n matrices.

Denote the vector of target eigenvalues by µ = (µ1, µ2, . . . , µ2n)
T and de-

note the coefficient vectors by α = (α1, α2, . . . , αn)
T and β = (β1, β2, . . . , βn)

T .
Also let λ(α,β) = (λ1(α,β), λ2(α,β), . . . , λ2n(α,β))T denote the vector of
eigenvalues of P (λ) for particular α,β and, for each i = 1, 2, . . . , 2n , let
zi(α,β) be the eigenvector corresponding to the eigenvalue λi(α,β).

In this paper we restrict ourselves to the case where S does indeed de-
fine a solution to Problem 1 and we further assume that there is an open
neighbourhood of α, β in which the conditions of Problem 1 are satisfied
and P (λ) has eigenvalues and eigenvectors which are analytic.

For a discussion of the conditions which need to be imposed on the set S
to ensure the existence of a solution α, β to Problem 1 see [5, 6, 7]. However,
the constructions outlined there are restricted to rather special problems and
importantly do not respect structure and so tridiagonality, sparsity and other
structural properties are generally lost.

On the other hand, for affine solutions the family of matrices that make
up the affine sums (3), aside from being symmetric, can also be chosen to have
other important structural properties. Thus, for example, in the vibration
control problem setting the family can be constructed from elements each of
which represents a particular kind of control. There elements of the form (ei−
ej)(ei−ej)

T , where ek is the kth column of an identity matrix of appropriate
dimension, represent passive controls. In addition, the nonlinearity of these
problems frequently gives rise to a multiplicity of solutions, a feature which
allows designers some choice in their designs.

In Section 2 we describe a Newton method for solving Problem 1 and
in Section 3 we illustrate the method on some simple examples and mention
come conclusions and further work. Empirical evidence suggests that the
method has quadratic convergence.
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2 The method

In this section we develop a Newton method for the eigenvalues of the pen-
cil P . The method is designed to find the values of affine sum coefficients
α and β which give P the required eigenvalues.

We separate out real and imaginary parts of the complex eigenvalues
and construct the method so that only real arithmetic is used throughout.
Although the number of real and the number of complex eigenvalues can be
different from one iteration to the next (typically early on in the iteration
process) these numbers become fixed as the iteration approaches the values
of α and β to which the method converges. We therefore assume that the
target eigenvalues and the eigenvalues for the current α and β iterates have
the same number of reals and complex pairs in what follows.

The target eigenvalues {µk}2n
k=1 are ordered so that the first r

µ1 ≤ µ2 ≤ · · · ≤ µr (4)

are real and the remaining 2n− r = 2c complex eigenvalues are arranged as
conjugate pairs

µr+1 = ρ1 + iη1 , µr+2 = ρ1 − iη1 ,
µr+3 = ρ2 + iη2 , µr+4 = ρ2 − iη2 ,

...
...

µ2n−1 = ρc + iηc , µ2n = ρc − iηc .

(5)

Now consider the eigenvalues of the pencil for a particular set of coef-
ficients α and β. We arrange these eigenvalues as we arranged the target
eigenvalues: λ1 ≤ λ2 ≤ · · · ≤ λr are real and the remaining 2n − r = 2c
complex eigenvalues and their eigenvectors are ordered thus

λr+2j−1 = φj + iψj λr+2j = φj − iψj
zr+2j−1 = xj + iyj zr+2j = xj − iyj

}
j = 1, 2, . . . , c .
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Finally, we partition the 2n× 2n real Jacobian of f as

J =

 J1 J2

J3 J4

J5 J6

 r
c
c

n n

where the real eigenvalue blocks are defined by [J1]ij = ∂λi/∂αj , [J2]ij =
∂λi/∂βj , for all i = 1, 2, . . . , r and j = 1, 2, . . . , n , and the blocks for the
complex eigenvalues are defined by [J3]ij = ∂φi/∂αj , [J4]ij = ∂φi/∂βj ,
[J5]ij = ∂ψi/∂αj , [J6]ij = ∂ψi/∂βj , for all i = 1, 2, . . . , c , j = 1, 2, . . . , n .

We apply Newton’s method to the 2n dimension real valued function

f(α,β) = ( vTλ ,v
T
φ ,v

T
ψ )T (6)

which is defined in terms of the three real vectors vλ ∈ Rr and vφ,vψ ∈ Rc

where, [vλ]j = (λj(α,β) − µj) , j = 1, 2, . . . , r , [vφ]j = (φj(α,β) − ρj) ,
j = 1, 2, . . . , c and [vψ]j = (ψj(α,β) − ηj) , j = 1, 2, . . . , c , to find the
real α,β which zero it.

Leaving aside the dependence on α,β where there is no ambiguity, we
have for the eigenpair λi, zi,

zTi (λ2
iM + λiC + K)zi = 0 . (7)

Note that here, as elsewhere, the quantity zTi denotes a true transpose and
not a conjugate transpose. Denoting a derivative with respect to either
αj or βj by a dot, we differentiate (7) to get

2żTi (λ2
iM + λiC + K)zi + zTi (2λiλ̇iM + λ̇iC + λiĊ + K̇)zi = 0 . (8)

This reduces, by (7), to

zTi (λ̇i(2λiM + C) + λiĊ + K̇)zi = 0 . (9)
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We now get expressions for the derivatives of the real and imaginary parts of
the eigenvalues from relation (9) in order to calculate the Jacobian matrix.

We deal first with the eigenvalues which are pure real. Provided the
denominators do not vanish we isolate λ̇ to get

λ̇i = − zTi (λiĊ + K̇)zi
zTi (2λM + C)zi

. (10)

Now note that for j = 1, 2, . . . , n

∂C

∂αj
= Cj ,

∂C

∂βj
=
∂K

∂αj
= O ,

∂K

∂βj
= Kj , (11)

and so for 1 ≤ i ≤ r

∂λi
∂αj

= − λiz
T
i Cjzi

zTi (2λiM + C)zi
,

∂λi
∂βj

= − zTi Kjzi
zTi (2λiM + C)zi

. (12)

This defines the r × 2n first block row of the Jacobian matrix.

Writing the real and imaginary parts of (9) explicitly gives, (omitting
subscripts in the interests of clarity)

(x + iy)T
{[
φ̇(2φM + C)− 2ψ̇ψM + ψĊ + K̇

]
+ i

[
ψ̇(2φM + C) + 2φ̇ψM + φĊ

]}
(x + iy) = 0 .

(13)

We equate the real and imaginary parts of (13) to zero to find, after some
manipulations,

φ̇ =
uw + vt

t2 + u2
, ψ̇ =

tw − uv

t2 + u2
, (14)

where
t = (x + y)T (2φM + C)(x− y)− 4ψxTMy ,
u = 2ψ(x + y)TM(x− y) + 2xT (2φM + C)y ,

v = −(x + y)T
(
φĊ + K̇

)
(x− y) + 2ψxT Ċy ,

w = −ψ(x + y)T Ċ(x− y)− 2xT
(
φĊ + K̇

)
y .
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The numbers t and u are independent of Ċ and K̇ and so they remain the
same whether the differentiation in (9) is with respect to αj or βj. But the
numbers v and w, when we differentiate with respect to αj reduce, by virtue
of (11), to v = −(x + y)TφĊ(x− y) + 2ψxT Ċy and w = −(x + y)T Ċ(x−
y) − 2xTφĊy and these are used in (14) to compute the elements of the
block components J3 and J5. By similar reasoning u and v, for the case
where we differentiate with respect to βj, become v = −(x + y)TK̇(x − y)
and w = −2xTK̇y , and these are used in (14) to compute the elements of
the block components J4 and J6.

This completes the determination of J and we immediately write the step
of the Newton method which computes the estimates α(k+1) and β(k+1) from
α(k) and β(k) as

J
(
α(k),β(k)

) ((
α(k+1)

β(k+1)

)
−

(
α(k)

β(k)

))
= −f

(
α(k),β(k)

)
. (15)

The kth step of the algorithm now operates as follows: using the current
values α(k) and β(k),

1. compute the eigendecomposition of P
(
λ

(
α(k),β(k)

))
,

2. compute the Jacobian J
(
α(k),β(k)

)
using (12) and (14),

3. compute the right hand side function f
(
α(k),β(k)

)
of (6),

4. solve the linear system (15).

Stop when δ(k+1) def
=

∥∥∥∥(
α(k+1)

β(k+1)

)
−

(
α(k)

β(k)

)∥∥∥∥
2

is sufficiently small.
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3 Examples and conclusions

In this section we present small, simple examples to illustrate the use of
the method and to show the behaviour, typical in the experience of the
authors, which supports the conjecture that the method has second order
of convergence. All calculations were performed in ieee standard double
precision arithmetic (machine ε ≈ 2× 10−16).

Example 1 In this example we have n = 5 , M = I ,

C0 =


10 −10 0 0 0

−10 18 −8 0 0
0 −8 12 −4 0
0 0 −4 12 −8
0 0 0 −8 11

 , K0 =


10 −10 0 0 0

−10 18 −8 0 0
0 −8 12 −4 0
0 0 −4 12 −8
0 0 0 −8 11


and the affine families have Ki = Ci = (ei − ei+1)(ei − ei+1)

T , i =
1, 2, . . . , n− 1 and Kn = Cn = e1e

T
1 + ene

T
n . For the case

α = −β =
(
−1 1 −1 1 −1

)
, (16)

the pencil P (λ) has the real eigenvalues −26.07397, −18.47433, −8.91370,
−2.48789, −1.11603, −0.36370 and the complex eigenvalues −1.69234 ±
2.43496 i , −0.09285± 0.72845 i . Using the starting values

α(0)T = (−1.2, 1.4,−1.6, 1.8,−2.0) ,

β(0)T = (1.2,−1.4, 1.6,−1.8, 2.0) ,

the method finds the α, β shown in (16) correct to about twelve decimals in
nine iterations (see Table 1). The rate at which the error reduces is consistent
with second order convergence.
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Table 1: Successive correction term norms δ(k+1) and function value norms
for Example 1. Exponents are shown in parentheses.

k δ(k+1)
∥∥∥f (

α(k),β(k)
)∥∥∥

2

0 5.33(+00) 1.53(+00)
1 2.93(+00) 2.62(−01)
2 1.12(+00) 6.99(−02)
3 2.93(−01) 1.09(−02)
4 6.83(−02) 1.51(−03)
5 1.47(−02) 2.07(−04)
6 7.91(−04) 9.97(−06)
7 2.27(−06) 2.85(−08)
8 1.91(−11) 2.49(−13)
9 3.96(−13) 3.89(−14)

Example 2 Using the same M , C0, K0, affine family and α, β as in
Example 1 but with the alternate starting values

α(0)T = (−0.54551, 1.29812,−0.83552, 1.23910,−0.70141) ,

β(0)T = (1.08072,−0.58526, 1.47806,−0.70223, 1.01437) ,

the method finds a second solution

α(8)T = (−0.87850, 0.89416,−0.99899, 0.99300,−1.00968) ,

β(8)T = (1.11642,−1.08588, 1.05144,−1.16071, 1.01043) ,

to the problem in Example 1 to the same accuracy in eight iterations. The
eigenvalues of the second solution agree with the target eigenvalues to about
14 decimals. As before the error reduction is consistent with second order
convergence.

Our empirical evidence suggests that the problem most likely to cause a
failure of the method occurs when the number of real and complex eigenvalues
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in one of the iterates differs from the number of real and complex eigenvalues
in the target set. In the experience of the authors the method does not
recover when this occurs at some stage during the computation. How one
might adjust the method to overcome this difficulty remains an open question
because of the difficulty of devising a suitable metric for the distance between
the current set of eigenvalues and the target set.

We expect, as occurs for the generalized eigenvalue problem case, that
the Newton method proposed here can be modified to preserve quadratic
convergence (as we expect this method can be shown to have) in the case of
equal eigenvalues.

We have presented a new method for pole assignment to a quadratic
pencil by using affine sums. The method preserves structure, uses only real
arithmetic, and appears to have second order convergence. Further work
is necessary to confirm the order of convergence, to establish its behaviour
where close or multiple eigenvalues are prescribed and to devise continuation
methods for larger distance assignment of the spectrum.
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