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Numerical methods for parameter
identification in a convection-diffusion equation

T. S. Shores*

(Received 8 August 2003; revised 30 January 2004)

Abstract

We use a recently developed Sinc-Galerkin method for the solu-
tion of non-self-adjoint equations to solve a parameter identification
problem arising from the one-dimensional convection-diffusion equa-
tion. This method is well suited for unbounded domains and certain
singularities in the coefficients, as we illustrate by several examples.
Practical aspects of implementation of this method are considered

in detail.
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1 Introduction

Sinc methods for the numerical solution of ordinary differential equations
have been found to be a very effective technique, particularly for problems
with singular solutions and those on unbounded domains. In this paper we
consider an inverse problem associated with the direct problem of solving a
steady state convection-diffusion system in one space dimension given by

Le=—(D(2)cy)s + (v(@)e)s + ANz)e = f(z), x>0,
Ac(0) + Be,(0) = G, B#0, (1)
c(o0) = 0.

The inverse problem is that of determining the diffusion coefficient D(x) from
measurements of the solution ¢(x). This direct problem is singular since it is
defined on a semi-infinite interval. Moreover, we allow certain singularities
in the coefficients v(z), A(z) at the endpoints. We make assumptions about
the coefficients and the solution as well. In particular, we assume that the
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dispersion coefficient D(x) is continuous, bounded and tends to a constant
as r — 00. These conditions ensure well-posedness of the direct problem.
Additional conditions are required for Sinc methods to work and we discuss
these in Section 3.

There are many Sinc approaches to solving second order differential equa-
tions (see [4, 6, e.g.] for comprehensive surveys). These typically require a
unit coefficient for the second order term of the differential equation, which
would necessitate differentiation of the diffusion coefficient D(x). Methods
that avoid this differentiation were developed in [2, 4, p.188]) for selfadjoint
problems on a finite interval with Dirichlet boundary conditions. The direct
solver that we employ was developed in [5] to also avoid differentiation of the
diffusion coefficient D(x) and to handle the case of a non-selfadjoint problem
with mixed boundary conditions as well. We shall show that when properly
tuned, it yields a robust and effective tool for identification of D(x). Elec-
tronic copies of the programs used in this paper are available upon request
from the author. These programs were written in the language Octave [1]
but are easily ported to MATLAB.

2 Algorithm for the direct problem

2.1 Sinc background

Recall that the sinc function is defined for all z € C by

) sin(7z) . % 0
smc(z)—{17 ars

Let h be a positive constant. We denote the sinc basis functions by

x —kh

S(k,h)(x)zsinc( ), keZ, —oo<x<o0.
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The sinc differentiation operator matrix of dimension m + 1, is given by

I = [51(‘116)];‘7;:0’ where (5](.,16) = hS'(§,h)(T) |p=s, and similarly [ = 1(©) =

[06) = [S(k, h)(GR)]

Let ¢ be a conformal map which maps the horizontal strip of radius d
about the z-axis onto the domain D with boundary I' and inverse map
1 and F'(z) an element of

B(D) = {F(z) | Fis analytic on D, /F]F(w) dw| < oo}

Assume F'(z) is real valued on (0,00), « is analytic, ¢'F/y € B (D) and
suppose there are positive constants «, 3 and C so that

PO o fowlaeD. ceT.
7O {exp(=B10()), € €Ty,

\[A/here)r}Fa ={{el |9 =a€(—00,0)}and 'y ={{ €l | ¢&) =x €
0,00)}.

Theorem 1 Assume notation as above and make parameter selections
3
N = gM and h = Ld §27rd'
o] aM In(2)

Set wy, = (kh). Then there exists constants K, L independent of M and
m=0,1,...,n, such that for all ¢ € T

S KM(m-i—l)/Qe—\/TrdaM

dm B al F(wk’)d_m o
PO 3 S st o0l

[e.e]

and

b
/ (vw[S(j, h) o ¢]) (z) dz — h%“f’(xj) < LMeVrdaM
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Proofs of these theorems can be found in the Stenger text [6] or the Lund
and Bowers text [4]. This fact exhibits the exponential accuracy of correctly
tuned sinc approximations. It also underscores the need to understand the
asymptotic nature of the function to be approximated. Extensive discussions
of these matters can be found in the texts cited.

2.2 Variational and numerical variational forms

Following [5], we multiply the differential equation of system (1) by suitable
test functions u which vanish at the endpoints, and use integration by parts

to obtain
o0

(Deguy — veug + Acu) de = / f(z)udz.
0 0

We can express this variational form as T'(c,u) = R(u). Now define

&(z) = c(z) = (0)go(x) — c(0)qn (x)

for suitable cardinal functions go(x), ¢1(x) satisfying

®(0) =0, @(0)=1, ¢0)=1, ¢(0)=0,

and we obtain that ¢(0) = 0 and & (0) = 0. Sinc approximation theory can
be applied to this function and it yields the numerical variational form

T(¢,u) + c:(0)T(qo,u) + c(0)T(q1,u) = R(u).

For a Sinc-Galerkin approximation we choose test functions u;(z) =
v(x)S(j, h) o ¢(x) where y(x) is a weight function and ¢(z) is a conformal
map from (0,00) to (—o00,00), such as ¢(z) = In(x). We assume that the
coefficients of the problem (1) and the choice of cardinal functions gy and ¢;
are such that the solution ¢(x) satisfies the restrictions of Theorem 1. Thus
we can approximate ¢ exponentially well by

Nz

Enle) = S B ()85, ) 0 6(a),

5 (wj)
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where «y is an appropriately chosen so that &(z) is accurately approximated
by the derivative of the cardinal sum and m = M, + N, + 1, the number of
sinc nodes. More importantly, this formula can be differentiated to obtain
an exponentially accurate formula for the derivative of & (z). This formula
can be inserted into the numerical variational form for the direct problem.

Let d = [d;]7L; be the the vector of sinc node values of &, (x). The
discrete system corresponding to the numerical variational form can, after
much algebraic manipulation, be expressed as a linear system with coefficient
matrix M, namely

Md + 06T0 -+ CoT1 = Rdis R

where ¢y = ¢(0) and ¢, = ¢,(0). Let wy, = MRy, wy = M~(T,) and
wy; = M~'T, and we may write this equation in the form

d = ws — cywy — cowy -

A scheme for computing ¢, and ¢y can be derived by integrating the
differential equation of the problem from 0 to co to obtain

/Ooo<f(x) —Mz)e)dz = D(0)ey(0) — v(0)e(0).

This equation can be discretized to give one more linear equation in ¢}, and ¢
in addition to the left boundary condition,

Acg+ Bey =G

For details we refer the reader to [5].

3 Algorithm for the inverse problem

The problem we consider is as follows: Given a sampling of the solution ¢(x)
of the system (1) at n various points (possibly with noise) and all parameters
except D(x), to recover an approximation to D(x).
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Suppose that ¢(z) solves the system Lc = f together with the boundary
conditions. In the setting of an inverse problem, we are usually given the
solution ¢(z) by point-wise measurements d, which may have noise as well.
If the operator H represents point-wise evaluation, then the appropriate op-
erator for inversion is

F(D)=d=Hc=HL'(f),

and we want to solve F'(D) = d for the parameter D. We assume the direct
problem is well posed, so that F'is well defined. As usual, “inverting” F' is
an ill-posed problem, so we resort to the standard Tikhonov regularization
technique and cast the problem in the form:

Minimize the functional
1
T.(D) = 3 |IF(D) —d||* + o | P(D)]” .

We now proceed to discretize this operator T,. The semi-infinite inter-
val (0,00) poses special difficulties, since the coordinates of the first and
second term of the Tikhonov functional are quite different in nature.

Penalty Term P(D): We choose to define the penalty function in terms
of the defining constituents of a solution of the direct problem and a possible
nonzero value at infinity. Thus our full model for D(z) (in analogy with the
solution ¢(x) of the direct problem) is

D(x) = D(z) + D'(0)go() + D(0)g1 (z) + D(00)ga (),

where gy, ¢ are as above, and ¢2(0) = 0, ¢5(0) = 0, ¢2(c0) = 1. As in
Section 2.2, the cardinal functions are chosen in such a way that Theorem 1
applies to the reduced function D(z). This amounts to an analyticity re-
striction on D(z) in the domain D (which includes the positive z-axis) of
Theorem 1. Hence we define the penalty function

2

~ 12 ~
P(D) = a|D'(0) + a2 [DO) + a3 D(o0)* + s || D+ as | D
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This function discretizes very nicely and Sinc theory can be used to approxi-
mate the last two terms exponentially accurately, thanks to our assumptions
about D. In practice, the coefficient of D(c0) tends to be unimportant rela-
tive to the others, except for the fact that it tends to overly damp the solution
when larger values of the regularization parameter «. Hence, in the absence
of additional information, we typically take all coefficients to be 1 except as,
which is chosen to be small, say a3 = 0.001.

Functional Term: The term 3 ||F(D) —d ||* is more problematic since the
sampled values,

d =~ [e(zp)]j=r

are not necessarily at the sinc nodes (in fact, almost certainly not), yet in
the limit this term should provide global information about D itself. We
choose the simplest possible interpretation: that F'(D) — d is a fixed vector
of values and we simply use the Euclidean norm (scaled by 1/+/n , where n is
the dimension of the vector so as to approximate integrals in the limit of n)
on this part of the Tikhonov functional.

Discretization is now very straightforward: Approximate L=!(f) on a sinc
grid, then use a projection matrix H to evaluate the approximate sinc solu-
tion at the sampling nodes. Thus, if there are m sinc nodes and n sampling
nodes, L™(f) is discretized to a vector v = [vj]72, and the discrete version
of F(D)—dis

F.(D)—d=Hv—d.

4 Examples

We shall illustrate the method by several examples. These examples are
somewhat artificial in the sense that the exact answer is known in advance
and is even used to generate parameters of the problem. Nonetheless, such
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TABLE 1: Accuracy of Sinc approximation for Example 4.1.
a=1,=1,d=n/3

My | m  h eO)] le(zi)lloo
16 | 22 045 1.75e-03  3.39e-03
32 | 40 0.32 4.89e-04 5.04e-04
64 | 78 0.22 2.27e-05 2.78e-05
128 | 148 0.16 1.69e-08 1.28e-06

an approach is needed to simulate the generation of data and to evaluate the
accuracy of the algorithm.

4.1 Example

The direct algorithm is illustrated by the following example, which is taken
from [5]. Consider the steady-state convection-diffusion problem
—((1=05e*)cy)e+cotc = f(x), >0,
c(0) = 0.5¢,(0) = 1,
(o) = 0.
Here the solution that generated the problem is c(x) = exp(—2z%/4). Some
results appear in Table 1. Similar results are found over a range of examples.
The parameters «, (3, d play the same role as Theorem 1. For most inverse

problems that we have considered, a sinc system of order m between m = 40
and m = 80 suffices.

4.2 Example

Consider the direct problem which constitutes Example 4.1. Suppose that
we are given a sampling of the true solution at n equally spaced nodes (equal
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TABLE 2: Computations for Example 4.2.

n  BFGS Error a m (10% noise) Bras Error «

4 95 0.01  0.00048 4 74 0.02  0.00083
20 113 0.0047 0.00022 20 96 0.014 0.001
40 108 0.0047 0.00022 40 90  0.038 0.00083

spacing is not a requirement but a convenience here). Take as starting point
the constant function Dy = 2 and sinc system size m = 40. We sample
the true solution both with and without noise at evenly spaced points across
the interval [0.2,2.4]. The reason for this choice is that one can see on
examination of computed solutions that the solution vanishes very rapidly. In
practical measurements one would expect error to swamp very small values;
hence it is preferable to sample in regions where the forward solution is clearly
nonzero. In the case of noise we assume a relative error of at most 10% due
to a uniform distribution.

The number of variables in the Tikhonov functional varied from 87 to 123
in this example. A modified Newton BFGS method with Armijo line search
applied to the Tikhonov functional proved to be reasonably effective and
avoided the expense of full Hessian calculations. The results of our calcu-
lations are displayed in Table 2 for cases of exact data and data with of a
uniformly distributed random (relative) error of at most 10%. The num-
ber of iterations is listed in the BFGS column. The error displayed is the
direct error, that is, the approximate Ly norm of ¢(x) — Capprox(2), where
Capprox () 18 the solution to the direct problem obtained by using the com-
puted value of the parameter D(x) in the direct problem and c(x) is the
exact solution. Sinc quadrature is used to estimate this norm. Also listed is
the choice of regularization parameter suggested by L-curve analysis. Note
that cCapprox () is reasonably close to c(x). Of course, closeness of Capprox ()
to ¢(x) is no guarantee that the computed value Dapprox(x) will be similarly
close to the exact diffusion coefficient D(x). Graphs of exact and computed
values for the parameter D(x) are presented in Figure 1.
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T
Exact D(x)
Initial Estimate
,,,,,,,,, Final Estimate (m=4) -]
Final Estimate (m = 20) -~
Final Estimate (m = 40) -——-

FIGURE 1: Approximations to parameter D(x) in Example 4.2.
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The choice of regularization parameter « is a complex issue which is
complicated by the fact that our problem is non-linear. In these examples we
used the L-curve approach. However, we use the penalty functional J(D) in
place of || D|| since the latter term is not even defined in the traditional sense,
while J(D) serves as a substitute for a norm. It is well known that the L-
curve selection method need not be a convergent strategy (see Vogel [7]) even
for linear inverse problems. We use the L-curve as a tool to help us achieve a
balance between regularization and residual terms. Therefore, irregularities
in the behavior of the L-curve are not a matter of special concern. In practice,
the L-curve seems to be a very effective tool. For a detailed analysis of various
strategies for choice of a regularization parameter, see Kilmer and O’Leary |3,
e.g.] or the text [8] by Vogel. We conservatively choose the largest « at
which a significant corner occurs. In most cases this is graphically obvious,
although in a few cases the L-curve was so smooth that a “corner” was
difficult to identify. In such cases we approximated the curvature numerically
and selected the point of maximum numerical curvature. In a few other cases
the L-curve was erratic and several choices for a “corner” were possible.

4.3 Example

Our final steady-state convection-diffusion problem exhibits singularities in
both the coefficients and the solution c¢(x) = 22~ which is used to generate
the right hand side function in the system

3 c = flx), x>0,

—Czx + (&% + 4_(%2
c(0) —c,(0) = 0,
c(oo) = 0.

The singularities make the problem somewhat more intractable than the
previous example. In this problem fairly conservative choices of the sinc
parameters « = 1, f = 1, d = 7/3 (the same as in Example 4.1) work
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TABLE 3: Computations for Example 4.3.

m  BFGS Error a m (10% noise) BrGs Error «

4 93 0.12  0.00022 4 115 0.13  0.00022
20 103 0.0024 0.00022 20 118 0.013  0.0004
40 95  0.0028 0.00022 40 85  0.035 0.00091

TABLE 4: Computations for Example 4.3 with sampling at sinc nodes.

m BFGS Error a m (10% noise) BFGS Error a
20 103 0.0095 0.00022 20 108 0.027  0.0005
40 97 0.0138 0.00022 40 111 0.060 0.00083

reasonably well. Our results are summarized in Table 3 and Figure 2 for the
same types of error and measurements as in Example 4.2.

A natural speculation about these examples is that sinc nodes might yield
better results than the equally spaced nodes used in Example 4.2 and 4.3. To
compare results we revisit Example 4.2 and replace equally spaced nodes by
sinc nodes. In order for the comparison to be fair, we must sample no more
nodes than we do in the equally spaced case. The number of sample points n
is set equal to the number of sinc nodes m, which constrains the possibilities
for n. The choices n = m = 20 and n = m = 40 can be generated by taking
M, = 15 and M, = 32, respectively. A table of the resulting calculations
are given in Table 4. A comparison of Tables 3 and 4 shows that sampling
at the sinc nodes need not be an optimal strategy.

5 Conclusions
The foregoing algorithm and experiments suggest several conclusions:

1. Sinc methods provide a useful tool for solving certain direct singular
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T T
Exact D(x)

‘ ‘ ‘ ‘ ‘ Initial Estimate --—+---
2 B~ — i - e - . e R Final Esfimate (m=4)_________ H
‘ : : : : Final Estimate (m = 20) -

Final Estimate (m = 40) -———

TE B S e e S S W S —
f S —
0.5 - 4
I I I I I I I I
0 2 4 6 8 10 12 14 16 18

FIGURE 2: Approximations to parameter D(x) in Example 4.3.
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problems with high accuracy. These solutions can even exhibit mild
derivative singularities at the endpoints of the domain of the forward
solution such as c¢(z) = x'/2e™® or have singular coefficients such as
Mz) = 322,

4

2. Since high accuracy is obtained with relatively small discretization
numbers, minimizers used in solving inverse problems end up work-
ing with relatively low dimensional systems.

3. The method is fairly robust with respect to noise, provided that the
sinc parameters have been carefully chosen for the forward solver and
a suitable choice of regularization parameter « is made.

4. The algorithms we have outlined may prove to be useful in the design
of real experiments. For example, we saw that placement of sampling
nodes impacts upon the quality of results. Further investigations may
suggest optimal placements. Also, the issue of uncertainty in mea-
surement warrants further study. Our examples suggest that more
data points in the presence of measurement error may not be better.
One possibility is to use fewer nodes with repeated measurements at
each node.
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