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The Kohlrausch function: properties and
applications
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Abstract

In a wide variety of applications, including the modelling of the
glassy state of dense matter, non-exponential correlation functions in
nuclear magnetic resonance, polymer dynamics, and bone and muscle
rheology, Kohlrausch functions have proved to be more appropriate
in modelling the associated relaxation and decay processes than the
standard exponential function. However, mathematical results about
this function, important for both computational and modelling en-
deavours, are spread over publications in several quite different areas
of mathematics and science. The purpose of this paper is to review
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the key properties of Kohlrausch functions in a unified manner, which
motivates its use in the modelling of molecular processes. Some repre-
sentative applications and related computational issues are discussed.
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1 Introduction

Various authors [5, 16, 18, 21, 22, 24] observed that Kohlrausch (stretched
exponential) functions, which, for fixed 5, 0 < § < 1, and 7 > 0, take the
form

K. 5(t) = exp(—(t/7)%), 0<t< o0, (1)

are often more appropriate in modelling relaxation processes in bone, mus-
cles, dielectric materials, polymers and glasses than standard exponentials.
In part, this is a consequence of the fact that, because a relaxation depends
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on the entire spectrum of relaxation times, its structure will be non-linear
and not purely exponential. For example, Avellaneda et al. [3] showed that
the probability distribution solutions of Burgers’ equation, with a random
stationary Gaussian as the initial condition, have tails that take the form of
Kohlrausch functions.

As a result, Kohlrausch functions are now assumed by many to rep-
resent a ‘“universal model” [15, 16]. Functions of the form (1) were first
proposed by R. Kohlrausch in 1854 in the study of creep in electric dis-
placements [4, 12]. Different names are used for Kohlrausch functions such
as the Williams—Watts empiric dielectric relaxation functions, the Kww
(Kohlrausch-Williams—Watts) functions, and the stretched exponentials.

From a computational techniques and applications perspective, there is
currently no publication that considers the properties of Kohlrausch functions
in a unified manner. Even some of the statements in the literature about its
properties are imprecise, which the current article aims to correct. This
paper therefore represents a first attempt to list the properties in a unified
manner as well as motivate the use of Kohlrausch functions in the modelling
of molecular processes in terms of some representative examples.

Of course, many of the properties of Kohlrausch functions hold for the
standard exponential function. However, in this paper, the goal is to highlight
theoretical and practical situations where Kohlrausch functions might be the
more appropriate choice.

2 Key properties of Kohlrausch functions

2.1 Complete monotonicity and infinite divisibility

Kohlrausch functions K g(t) are a special case of a function of the form
exp(—6(t)), 0 <t < oo, where
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1. 6(0) =0, and
2. the derivative (t) of 6(t) is completely monotone; that is, it satisfies

dno(t
(—1)" dt’(l ) >0, for all non-negative integers n. (2)

The conditions 1 and 2 not only guarantee that exp(—6(t)) (and hence
Kohlrausch functions) are completely monotone, they are also the neces-
sary and sufficient conditions for exp(—6(t)) to be the Laplace transform of
an infinitely divisible measure du(p) [1, 2, 7, 8]; namely,

mm—wwwaémwm—wwm@» 3)

2.2 Kohlrausch functions and stable distributions

When 6(t) = t?, 0 < 3 < 1, Pollard [20] established that equation (3) can
be rewritten as

exp(—t”) = /OOO ©(B,p) exp(—tp)dp. (4)

It has been known since the work of Lévy that ¢(/3, p) is a stable distribution
[7, e.g.]. Such distributions are known to be unimodal [25]. Various explicit
formulas for ¢(3, p) have been determined. Doetsch [6] established

1 1
1,y —
o(3.p) = WGXP (—@> : (5)
Montroll and Bendler [16] established that

2(3.p) = =sin(3)Kus(e) (6)
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1 3/2

and K, is the modified Bessel function of order v. Humbert [11] showed
formally that

where

1 & L(Bk +1)
;kz:: sin Wﬂk’)w, 0<p<1. (8)
In particular, when g = 2/3,
1 2 4
o(3,p) = —Wp exp ( > 2) W_1/2,-1/6 ( 27p2> ; (9)

where W, ,(z) denotes the Whittaker function. Pollard [20] gave a rigorous
proof for equation (8) by first noting that

! /exp(zp)exp( PYdz, (10)

27rz .

w(B,p) =

for suitable v, and then, using contour integration methods, established
that v can be replaced by a contour o along the negative real axis traversed
—0o0 — 0 — —oo on either side of the cut, and hence

1 o0
P09 =+ [ expl-puexp(—u’ cos(md)) sin(u’sin(n)) du. (11
T™Jo
An alternative contour integration argument, using the imaginary axis, yields

the following alternative form for Pollard’s solution

o(B,p) = % / exp(—w” cos(13/2)) cos(wp + w’sinwB/2) dw.  (12)
0
This appears to be a new representation for ¢(3,p). Various authors pro-
posed computational procedures for the evaluation of the (Lévy) stable dis-
tribution function ¢(f,p), such as its unimodal structure [4, 9]. In their
work, Lindsey and Patterson [13] found the summation (8) easier to evaluate
than the integral (11).
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2.3 A Paley—Wiener property for support bounded
on the left

Paley and Wiener [19] established the following result: Given ¢(t) € Lo(R)
with support bounded on the left, then

oo 1 N
/_ } Hog Jo(@)Il Offi‘j)” dw < o0, (13)
where -
_ / 6(¢) exp(—iwt) di (14)

is the Fourier transform of ¢(¢); and, conversely, if (13) holds for some gg(w) €
Lo(R), then there is an F'(t) € Lo(R), with support bounded on the left, such

that | F(w)| = |(w)].

Because a Kohlrausch function is an Lo (R) function with support bounded
on the left, it follows that the Fourier transform of such a function satis-
fies (13). On the other hand, Ngai et al. [17] noted that

15
0, w <0, (15)

~ {exp(—wﬂ), w>0,
satisfies equation (13) when 0 < § < 1, but not for the standard exponen-
tial situation when 3 = 1. Thus, for 0 < <1, thereis an Fj € Ly(R),
with support bounded on the left, such that |F5| |\Ifg] = \I/g Interest-
ingly, \Ifg( ) and its inverse Fourier transform are both Ly(R) functions with
support bounded on the left. The applicability of the above Paley—Wiener
result to the response of disperse mechanical and electrical systems has been
debated in the literature [14].
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3 Applications

3.1 The oscillatory shear connection

In the analysis of the oscillatory shear behaviour of a linear viscoelastic ma-
terial, the storage and loss moduli are defined by

G'(w) = u)/ooo G(7) sin(wT) dT, (16)

and

G"w)=w /000 G(7) cos(wT) dT, (17)

respectively, where G(7) is the relaxation modulus in the following Boltz-
mann model of linear viscoelasticity

ot) = / Glt — 7)i(r) dr | (18)
- / G(r)it — ) dr, (19)

with the stress o(t) satisfying
o(t) = G'(w) sin(wt) + G"(w) cos(wt) , (20)
when the strain v(¢) corresponds to oscillatory shearing sin(wt) , where w de-
notes the frequency of the shearing. For the loss modulus G"(w) (equa-

tion (17)), the choice of the Kohlrausch function as the relaxation modulus
yields

G"(w) = w/oooexp(—Tﬁ)cos(wT)dT, (21)
= 1wQsw), (22)
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where
Qslw) — % /_ exp(—iwr — 7)) dr, (23)
= %/000 exp(—77) cos(wt) dr (24)

is the symmetric (Lévy) stable distribution [4, 16]. For stable distributions,
0 lies in the range 0 < 8 < 2, which is larger than that required for the
definition of the Kohlrausch function. Because of the known unimodal be-
haviour of the (Lévy) stable distributions [25], this analytic representation is
consistent with situations where the loss modulus has a unimodal structure.
Two Kohlrausch functions could be used when G”(w) has two peaks. Con-
sequently, to guarantee a strictly unimodal G”(w), the choice of 5 must be
such that the linear growth of w is slower than the decay of Qg(w) after it
passes through the maximum. In fact, this is confirmed indicatively by the
known asymptotic behaviour [16] of Qz(w)

I'(1 4 ) sin(73/2)
. 2
Tl (25)
The corresponding form for the storage modulus becomes
G'(w) = w/ exp(—77) sin(wr) dr . (26)
0

Some representative curves for different choices of 3 are shown in Figure 1.
They have a similar morphology to measured values of G'(w). This shows
that the choice of the Kohlrausch function for the relaxation modulus is
consistent with the known morphology of both G'(w) and G”(w) for linear
viscoelastic materials.

Alternatively, one can follow Bendler’s analysis of dielectric relaxation [4]
by assuming that G(7) corresponds to the negative value of the derivative
of a correlation function ¢) and that the correlation function is a Kohlrausch
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G (o)

FIGURE 1: For G(t) = exp(—t?), plots of G'(w) and G”(w) with 3 = 0.50,
0.65, 0.75 and 0.95.
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FIGURE 2: For G(t) = BtP~Lexp(—t?), plots of G’ (w) and G”(w) with 8 =
0.65, 0.75, 0.85 and 0.95.
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function. Substitution of this form for G(t) in the oscillatory shear equations
yields, for equation (26),

Glw) = m’Qsw), (27)
= fw /000 7 exp(—17) sin(wr) dr . (28)
The corresponding form for G”(w) of equation (21) becomes
Glw) = pw /000 777 exp(—77) cos(wr) d | (29)
= w—w’ /000 exp(—7") sin(wr) d7 . (30)

Now, however, the choice of 3 becomes more challenging. One the one hand,
f must be such that the linear growth of w is faster than the decay of Q3(w)
after it passes through its maximum in order to guarantee that the corre-
sponding form of G’,(w) has a morphology similar to that observed experi-
mentally. On the other hand, the choice of # must be such that the corre-
sponding G”(w) has the correct loss modulus morphology. It is clear that,
for the representatives curves for different choices of 3 shown in Figure 2,
the Bendler choice for G(t) limits the range of § that guarantees that G’ (w)
is strictly unimodal. This requires further investigation. In addition, the
corresponding G’ (w) can have a very strong growth because of the w? term
in equation (27), given the asymptotic result (25).

3.2 Large-scale polymer chain dynamics

In a recent paper, De Gennes [5] observed that, as well as explaining the
local segmental motion of a polymer near its glass transition, the Kohlrausch
function can also model the large-scale chain dynamics far above the glass
transition temperature as found in polydisperse systems. In addition, he
hypothesizes that the exponent [ is sensitive to the presence or absence
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of entanglements. De Gennes establishes the relevance of the Kohlrausch
function in the following manner. Let the memory function M(t) be the
Laplace transform of a distribution of relaxation rates f,

M(r) = / T W) exp(— 1) dr (31)

On the basis of experimental and theoretical evidence for relaxation rates
for polydisperse polymers as well as other situations, it can be confidently
assumed that the behaviour of W (f) often has the form

W(f) NeXp(—l/fa), a>0, (32)

which falls sharply for small f. For example, in the reptation dynamics for
entangled chains, the distribution of W (f) is given by

W)~ e (/) 3

where N is the average molecular weight, N, is the distance between entan-
glements (with N, the polymerisation index, satisfying N > N,), f is the
relaxation rate and 7y is the microscopic jump time (independent of N). For
W (f) of equation (32), equation (31) takes the form

M(t) ~ / " exp(=S(f 1) df | (34)

where S(f,t) = 1/f* + ft. Differentiating S(f,¢) with respect to f, one

obtains that at the minimum
«

~Y /6 =
S~Ct’, p Tl (35)
where C' is a constant. On rewriting (34) as
M(t) ~ eXp(—Ctﬂ)/ exp[—=S(f,t) + Ct?]df (36)
0

and observing that the integral is bounded for suitably large ¢ , it follows that

M (t) ~ exp(—Ct9). (37)
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3.3 Recovery of Kohlrausch parameters

Despite the wide applicability of Kohlrausch functions, little has been pub-
lished about their use as a model for the relaxation modulus in the Boltzmann
model (18). An exception is Schréter and Donth [23], who examined the mer-
its of such a choice in some detail. For a single Kohlrausch function K s(t),
such a choice reduces the problem of determining the relaxation modulus
from measured values of the stress o(¢) and the strain (¢) to determining
the parameters of 7 and . Husain and Anderssen [10] established how this
can be achieved. With the strain first applied at time ¢ = 0, they showed that
the (standard) monomial moments of the Boltzmann equation (18), given by

M, = /O oy (t)dt = /0 T [ /0 texp<—((t—T)/To)ﬁ)y(f)m} . (39)

can be reorganised, using a change in the order of integration, to yield

Ld . 41 ©
ueSE Qe (5) [

where I'(z),R(z) > 0, denotes the standard gamma function. This rela-
tionship leads naturally to simple algorithms for the recovery of estimates
of 79 and f from moments defined on the measured values of o(t) and ~(¢) .
Related expressions for averaged moments of the relaxation time 75 can be
found in Lindsey and Patterson [13, §IV].

3.4 Public domain algorithms

As already mentioned, the Kohlrausch model for the relaxation modulus
is quite popular in the study of a variety of physical and chemical pro-
cesses. The new version of the Complex Nonlinear Least Squares (CNLS)
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frequency-response fitting software, LEVMW, v8.0, is now available (May
2003) at no cost, from Solartron instruments at the website http://www.
solartronanalytical.com/downloads/software.html. It includes both
the LEVM program files for MS-DOS and the new LEVMW files for full oper-
ation in WINDOWS. The material is provided in compressed, self-extracting
form. Some of the programs in LEVM/LEVMW use the modified Levenberg—
Marquardt algorithm of Moré, which is robust, fast converging and involves
implicitly scaled variables. The computer package allows accurate calcula-
tion of both temporal and frequency Kohlrausch response for arbitrary (.
More information about the field may be found at http://www.physics.
unc.edu/"macd.
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