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Chaos, fractals and machine learning

Robert A. Pearson∗
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Abstract

The accuracy of learning a function is determined both by the
underlying process that generates the sample as well as the function
itself. The Lorenz butterfly, a simple weather analogy, is an example
dynamical systems. Slightly more complex 6, 9 and 12, dimensional
systems are also used to generate the independent variables. The
non uniformly fractal distributions which are the intersection of the
trajectories on a hyperplane are also used to generate variable values.
As comparisons uniformly distributed (pseudo) random numbers are
used as values of the independent variables. A number of functions on
these hypercubes, and hyper-surfaces are defined. When the function
is sampled near regions of interest and where the test set is of the
same form as the learning set, both the chaotic system and fractal
points have more accurate learners than the uniformly distributed
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ones. Using one form of distribution to learn the data, and another
for testing can be particularly poor. These cross distributional results
are dependent of the functional form. Aspects of machine learning
relevant to fractal distributions and chaotic phenomena are developed.
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1 Introduction

A wide range of natural phenomena are complex dynamical systems that
show some chaotic behaviour. The underlying chaotic system can determine
other variables. The weather, which is chaotic, can impact on the economy.
For example, farm incomes and price of produce to the consumer varies
according to crop success or failure. The prediction of the interesting variable
is complicated by the underlying chaotic system. Even with this complication
machine learning techniques have been used to allow some forecasts [4]. Data
mining of available sets is also more complex as data values are likely to be
related to recent history as well as the current status of the system. Thus
a general function learner is not sufficient. Further complications arise if all
the variables of the underlying chaotic system are not available.

While a long term forecast is inaccurate, and accurate estimates of the
current values are complex, some machine learning techniques can be useful.
This paper uses some very simple chaotic models where data on all the in-
dependent variables are available. The variable to be estimated is known to
be a function of the observed data.

2 Test dynamical systems

A chaotic dynamical system which is determined by an ordinary differential
equation requires at least three variables. One such three variable system is
known as the Lorenz Butterfly. This is derived from a set of partial differen-
tial equations that is a simple model of the weather. The ordinary differential
equations for this are

ẋ1 = σ(x2 − x1) , (1)

ẋ2 = ρx1 − x2 − x1x3 , (2)

ẋ3 = β(x1x2 − x3) . (3)
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There are three critical points. One is at the origin. For the other two,
zc = ρ − 1 with x1 =

√
ρ− 1 , x2 = −

√
ρ− 1 , y1 = x1 and y2 = x2 . For

this data set σ = 10 , ρ = 28 , β = 2.67 . The orbit of a realisation of this
dynamical system tends to move into the neighbourhoods of a critical point
then away again. It sometimes moves around an individual critical point,
sometimes between them. As this is a chaotic system small changes in values
can lead to large changes in the position of a solution.

Higher dimensional chaotic systems were generated using multiple linked
three dimensional systems. Data for six, nine, and twelve dimensions were
considered. The multiple sets were weakly nonlinearly coupled. This was
cyclic, with the first being linked to the second, then the last back to the
first. The second equation of each set was linked to the first of another by

ẋ2 = ρ(1.0 + 0.02x4)x1 − x2 − x1x3 . (4)

The higher dimensional systems have multiple critical points. A single
critical point consists of a selection of one of each from the sets. Thus the
fourth dimensional system, including the ones at the origin has 34 points.
Of these, 24 points are of particular interest as the regions near those with
a zero value are not well populated with trajectories. To first order, the
values of the critical points were the same as those of the three dimensional
system. More accurate estimates of a selected point can be found using an
iterative evaluation.

One functional value was calculated by averaging the values for simi-
lar equations. For example with four linked system z = (x3 + x6 + x9 +
x12)/4 . Next the distance between this three dimensional value and the
two three dimensional values of the first estimate of the critical points.
A function of the three variables was defined so that the maximum was
at one critical point, the minimum at another. Let r1 be the distance
from (x1, y1, zc), r2 be the distance from the point (x2, y2, zc). Thus ri =
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√
(x− xi)2 + (y − yi)2 + (z − zc)2 . The functional form chosen was

g(r1, r2) = 10

(
r1 − r2

r1 + r2

)
.

To these values two types of noise were added. For the first the predicted
value was multiplied by a uniformly distributed (pseudo) random values with
a minimum of 0.99 and a maximum value of 1.01. Next the fourth decimal
point of the recorded value of the coordinate was altered, again with a pseudo
random number.

The function could be considered as a very simple analogue to the impact
of the weather on the economy. If the nonlinear oscillator represents a very
simplified southern oscillation (el Nino, la Nina) then the function measures
the economic consequences of this on areas in Australia.

Another function used the distances between the coordinate value and
the first estimate of critical points in the number of dimensions N used
in the calculations. Thus for the distance to the first critical point with

coordinates denoted by xcrit1
j , D1 =

√∑j=N
j=1 xj − xcrit1

j . The functional value

was calculated from the distances to all the critical points with a non zero
coordinate by

g = 10

(∑k=nc
k=1 (−1)k+1Dk∑k=nc

k=1 Dk

)
.

The critical points were calculated, and labelled by permuting the two op-
tions (+ve and −ve) with the lower dimensions varying the fastest. A third
function was also considered.

The starting coordinates of the combined systems was (0.001, 0.002, 0.003).
Each successive system had (0.001) added to that of the previous one. Thus
for the set of four (x12 = 0.006). The test set followed the trajectory after the
learning set. If the same initial values on each set were used the trajectory
is one where the values of each set remains synchronised. The small changes
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in the initial values of each set, together with the chaotic nature of each
set, guarantees that coordinates cover a wide range of values. A second set
of learning and test trajectories started at (0.002, 0.003, 0.004) with (0.001)
added for each group.

3 Fractal hyper-planes

The trajectory is a continuous curve in the hyper-rectangle. As discussed
in [5] this curve intersects a (hyper) plane in a distribution that is essentially
fractal. A fractal distribution is characterised by its fractal dimension. In
addition the fractal of the intersecting points for the chaotic system does
not cover the hyper-plane. There are significant regions without a point
of intersection.

The points at which all trajectories intersect the (x1 = 0) hyper-plane
were found to within the next 0.05 time-step. The functions defined on this
were similar to the functions for the full dimensional trajectory. For the
first function, the averages for the first combined dimension were calculated
omitting the first coordinate. For the second function, the distances from
the critical point of the first set omitted the first coordinate, and other sets
were unchanged.

The trajectories for each hyper-rectangle were used for the (hyper) sur-
faces. Between 2,000 and 3,000 points occurred in the learning sets. The test
sets had about 1200 points.

4 Pseudo-random

None of the trajectories will cover the possible multi-dimensional space. As
well as being space in each dimension there are finite bounds. The bounds for
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each set of the Lorenz Butterfly in all combinations were similar, with min-
imum (−13,−18, 0) and maximum (13, 18, 56). A pseudo-random number
generator was used and transferred to the range of the independent variable.
This gives a uniformly distributed set.1 Once the coordinates of the point
were generated the functions were calculated in a similar way to those of the
dynamical system.2

5 Results

An implementation of boosted regression trees [3] was used to learn an ap-
proximation of the functions. The set of trees was then used to predict the
values of the test set and evaluate the errors. The results documented in the
tables are the ratios of the error of the regression tree to the error of the
naive prediction. This naive prediction is the mean value of the learning set.
The different ratios are included. The Least Squares (ls) error is the measure
used in building the trees. The lad error is an alternative [1]. The maximum
error is the error in an example which differs most from the prediction. In
the tables, the ratio is the ratio of the largest absolute difference of the tree
to the largest absolute difference in the naive prediction. The worst example
for the tree is in general not the worst example for the naive prediction.

1Some pseudo random number generators use fractal distributions but unlike the fractal
distributions generated by the chaotic dynamical system they cover the range.

2The matlab code for the dynamical system was modified for the pseudo random set.
Also only one series of pseudo random numbers was used. This single series included the
points, the noise added to the value of the dependent variable, and the noise added to the
independent variables.
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Table 1: Reduction in error for selected points on trajectories
Two Point Distances Function 2

Learning Test No of Error Ratio No of Error Ratio
n Set Set trees ls lad Max trees ls lad Max
9 Chaos Chaos 61 0.11 0.32 0.56 21 0.05 0.21 0.39
9 Random Random 41 0.26 0.51 0.63 22 0.10 0.30 0.52

12 Chaos Chaos 62 0.13 0.36 0.53 20 0.05 0.20 0.43
12 Random Random 75 0.20 0.44 0.61 11 0.12 0.34 0.56
9 Chaos Random 61 0.71 0.89 0.84 21 0.65 0.86 0.70
9 Random Chaos 41 0.25 0.49 0.65 22 0.14 0.33 0.55

12 Chaos Random 62 0.53 0.77 0.70 20 0.63 0.83 0.70
12 Random Chaos 75 0.23 0.47 0.61 11 0.18 0.38 0.62
Second trajectory with testing on the first
9 Chaos-2 Chaos-1 34 0.16 0.40 0.65

12 Chaos-2 Chaos-1 46 0.16 0.39 0.56

5.1 Selected points on trajectory

The selected results for the various dimensions are included in Table 1. The
second trajectory for the chaotic systems was also tested on the test set from
the first one. Learning on one and testing on another had results with a
similar accuracy to learning and testing on parts of the same realisation. In
all cases learning on a chaotic set and testing on a similar set is more accurate
than learning on a uniformly distributed one and testing on another set with
the same properties. When a trajectory is used to learn and a uniform pseudo
random set is used to test the errors can be large. The third functional form
had results qualitatively similar to the other two.
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Table 2: Reduction in error on a fractal set
Two Point Distances Function 2

Learning Test No of Error Ratio No of Error Ratio
n Set Set trees ls lad Max trees ls lad Max
8 Chaos Chaos 30 0.11 0.32 0.39 45 0.02 0.12 0.29
8 Random Random 37 0.28 0.53 0.64 7 0.07 0.27 0.49

11 Chaos Chaos 54 0.13 0.36 0.52 32 0.02 0.14 0.30
11 Random Random 42 0.39 0.57 0.66 12 0.06 0.24 0.44
8 Chaos Random 30 1.27 1.28 0.76 45 0.82 0.93 0.79
8 Random Chaos 7 0.24 0.45 0.55 7 0.24 0.45 0.55

11 Chaos Random 42 0.32 0.56 0.72 32 1.06 1.06 0.80
11 Random Chaos 12 0.22 0.45 0.60 12 0.22 0.45 0.60

5.2 Fractal distributions

Using only a hyperplane of point values gives similar qualitative results to
the trajectory (Table 2 ).

6 Data set properties and learning theory

6.1 Properties of the dynamical system and the
fractals

When considering learning theory aspects the properties of the dynamical
system, and the fractal distributions are used.

For the dynamical system only the trajectory of the system generates
points for the learner. Normal to the trajectory these points have a fractal
structure [5]. Also in general this fractal structure does not cover the space.
For example consider a dynamical system which has an unstable critical
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point. A particular trajectory may start near that point, but it will move
away and not return close to the critical value. The actual points of the
strange attractors will not be found in realisations.3 Also with a chaotic
nature the trajectories do not include limit cycles, nor do stable critical
points occur in the chaotic regime.

The points distributed on the hyper-surface will not cover that surface.
There will be regions with a significant measure where no point on the tra-
jectory occurs. There will also be regions were two points are relatively
close. Note that the fractal dimension is smaller than the dimension of the
real variables.

6.2 Nearby examples

For a uniformly distributed random sample one of the curses of high di-
mension data is that even with a large data set the probability of finding
another example close to a given one is small. In an alternative view the
distance from a given example which is needed to find another example with
significant probability increases. In the dynamical system the trajectory is
continuous. Another example close to a given one depends only on the sam-
pling of the trajectory.

If an arbitrary point is chosen the possibility of finding an example close
to this point also differ significantly between the chaotic or pseudo random
cases. For the pseudo random examples all regions, or points, are equivalent.
For the dynamical system some finite regions never have any examples.

For the non-covering fractal sets some regions have significant numbers of
examples, some none. Even if Gaussian noise was to be added to the fractal

3Consider the possibility that the values of the coordinates could be precisely repre-
sented in the word length. If these values were selected then ideally the trajectory remains
at that point. In practice noise generates a trajectory.
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set there could be significant regions with very low (or zero) probability of
finding an example.

7 Hypothesis spaces examined

The theoretical convergence and its properties depend on the hypothesis
space. Conceptually the functions are defined on Rn and probability distri-
bution is conceived of as a (continuous) function in the appropriate number of
(continuous) real variables. The boosted regression trees examine all hyper-
rectangles with boundaries half way between the points. The hypothesis
space actually examined in this paper depends on the data. For a random
sample with a finite machine the number of possible distinct points is fixed
by the word length. These points are uniformly distributed across the space
defined by the representation. Conceptually, if the number of points was
to become uncountable, and the word length was also uncountable, the hy-
pothesis space corresponds to the space of the independent variables of the
function. The smallest possible rectangle would be a point with measure
zero. The hypothesis space is continuous.

For the dynamical system points are only defined on the trajectory. In
the limit of an uncountable word length, and an uncountable number of ex-
amples the hypothesis space would become continuous line (linked along the
trajectory). However, some rectangles will still have a finite size (non zero
measure) normal to the trajectory. For some data sets, such as the atmo-
sphere and the stock market,4 only one trajectory exists. Thus all examples
are obtained from a single trajectory.

The hypothesis space examined for the fractal distribution (here on the
hyperplane) is also interesting. The possible examples are not continuous.

4While multiple stock markets exist they are linked. In this sense the set of stock
markets form a single very complex system.
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Even in the conceptual limit (of a single realisation) the probability distribu-
tion is not continuous. The fractal set in these examples does not cover the
space. In the limit the regression trees (uncountably deep, and uncountably
many) would find rectangles of finite measure.

Conceptually an ensemble of possible trajectories could be used to define
a probability distribution. Even in this case some regions of the hyper-
rectangle have very small, or even zero probability. The example points
would be clustered in regions that are fractally distributed.

8 Discussion

The previous brief discussion on learning theory and these data sets helps to
understand the results. The lower errors of both the chaotic (hypercube) and
the fractal plane are related to the distribution of the examples in the various
cases. The predicted value of an example on the test set is determined by
the hyper-rectangle determined by the trees. The value is then determined
from the value in this hyper-rectangle. This is in turn determined from
the average of all values of the learner in the same region. If the region is
small, or the function does not change rapidly, the accuracy is good. An
accurate prediction occurs if nearby samples occur in the learning set. For a
chaotic or fractal distribution a close value is likely to exist. The accuracy is
high. In contrast learning on a chaotic set and testing on a random one can
yield very large errors. This is related to the differences in the distributions.
When a randomly selected point is chosen it can be in regions ignored by the
chaotic one. No close point in the fractal set may occur. If this point is in a
region where the function has significant changes in value then the differences
between the test value and that of the nearest point in the learning set will be
large. It is important that the trajectory be sampled for a time sufficient for
it to move into all regions where the function is expected to have significant
variation. Otherwise the errors can be large.
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The test sets generated are artificial simple analogs to the weather. They
form a fractal distribution. Such fractal distributions occur in a number of
natural domains [6]. In data gathered from such sets the function itself may
not be known. The only information is that of the observed points. The
expected accuracy of the prediction may depend on the region into which a
new point falls. If a number of points in the learning set are close then the
accuracy is high. If no points are in the region the anticipated accuracy is
low. In contrast the anticipated error of any uniformly distributed test set,
based on a uniformly distributed learning set, is independent of the point.5

This paper has used the values of the chaotic system (or the fractal distri-
bution), as independent variables and the current function values. No history
is included. Often predictions are needed. This is more complex and often
involves historical data [2]. Some of the features of the more simple now-
cast can be extended to this more complex case. In particular if the system
moves into a region which is not well represented in the learning data and the
function has significant variability in that region the errors are anticipated
to be large.

This paper has used a boosted regression tree, and this technique, in a
sense, adjusts to the distributions as well as the changes in the function val-
ues. This type of adjustment is not necessarily replicated in other techniques.
Case based learners can also adjust.

9 Conclusion

The process that generates function values determines the distribution of
points that are available to both the learner, and the testing set. These
distributions, together with the variability in the function will significantly
affect the errors in machine learning. If a fractal set occurs the errors in test-

5Provided sufficient points are chosen to cover the domain.
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ing on a fractal set can be expected to be significantly less than a uniformly
distributed set of examples. Similarly data generated from a trajectory of
a chaotic dynamical system can have significantly lower errors than those
generated at random. It is crucial that a learner based on chaotic or fractal
data is not presented with uniformly distributed data.
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