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Robust estimation in structural equation
models using Bregman and other divergences

with t-centre approach to estimate the
covariance matrix
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Abstract

Structural equation models seek to find causal relationships between
latent variables by analysing the mean and the covariance matrix of
some observable indicators of the latent variables. Under a multivariate
normality assumption on the distribution of the latent variables and of
the errors, maximum likelihood estimators are asymptotically efficient.
The estimators are significantly influenced by violation of the normality
assumption and hence there is a need to robustify the inference pro-
cedures. Previous work minimized the von Neuman divergence or its
variant the total von Neumann divergence to estimate the parameters,
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with the minimum covariance determinant used as a robust estimator
of the covariance matrix. We extend this approach by considering
other divergences and by developing a robust estimate of the covariance
matrix. The robust estimator of the covariance matrix developed is a
t-centre like estimator based on several minimum covariance determi-
nant estimators ranging from 0% contamination to 50% contamination.
The simulation results are promising. The results can be used for
robustifying the fit of structural equation models.
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1 Introduction

Structural equation modelling is a popular technique used to quantify rela-
tionships among variables where some of the variables are hidden (latent)
and some are observed (measured). A typical structural equation model has
a structural equation relating the exogenous (independent) and endogenous
(dependent) variables, and a set of linear equations which are grouped to-
gether to form a matrix equation, relating the latent variables to both the
exogenous and endogenous observed values. The unknown parameters within
the equations must be estimated to obtain some quantitative relationship.
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A process such as least squares estimation cannot be used to estimate these
parameters because the values of the latent variables are not known for any
given observable output vector. In our approach we minimise the distance
between the model covariance matrix Σ(θ) and a robust estimated covari-
ance matrix of the data U as a means of obtaining estimates of the model
parameters of interest. Moreover, we develope a t-centre like estimator of
the covariance matrix based on several minimum covariance determinant
estimators ranging from 0% contamination to 50%.

Under multivariate normality assumptions on the endogenous variables, infer-
ence procedures and their properties are well known [1, e.g.]. If the estimated
covariance matrix of the observed data is the sample covariance matrix S and
the model covariance matrix is Σ(θ), then the traditional maximum likelihood
(ml) divergence (discrepancy function) used in covariance structure modelling
is (up to additive constant)

F(θ) = log |Σ(θ)|+ tr[SΣ−1(θ)] − log |S| , (1)

where |Σ| is the determinant of Σ.

Penev and Prvan [5] provide references for evidence of the drastic effects
of non-normal data on the ml fit. They note that all robust procedures
suggested until now put weights on the data, depending on how likely it is to
be “from the model” rather than “contaminated”.

2 New two step procedure

Penev and Prvan [5] proposed a two step procedure to obtain a robust fit that
does not use the ml divergence. The first step is to find a robust estimator of
the covariance matrix of the endogenous variables and the second step is to
choose a robust divergence measure and then to execute a minimum-distance
type fitting to find an estimator of the model parameter vector θ.
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Penev and Prvan [5] used the minimum covariance determinant estimator
as the robust estimator of the covariance matrix. We now use a t-centre
like estimator of the covariance matrix which has the advantage of not
needing to commit to using a specified level of contamination. Penev and
Prvan [5] developed the total von Neumann divergence (tvnd) which was
used to measure the distance between the robust estimator of the covariance
matrix and the model covariance matrix. We now consider two different
divergence measures and variants to measure the distance between the robust
estimate of the covariance matrix and the model fitted covariance matrix.
These divergence measures, as opposed to the ones we use previously [5], are
specifically designed to robustly fit within the manifold of symmetric positive
definite d× d matrices.

We start our discussion with Definition 1 for the logarithm of a matrix.
Properties of such matrices were discussed by Higham [3]. Also, Definition 2
is for ∇Xf(X) where f(X) is a scalar function of the matrix X.

Definition 1. Assume Y is a square d× d symmetric and positive definite
matrix. Let Y = VDVT where V is a matrix of eigenvectors of Y and D is a
diagonal matrix whose diagonal elements are the corresponding eigenvalues
of Y. Then log Y = VDLV

T where DL is the diagonal matrix whose diagonal
elements are the logs of the eigenvalues of Y.

Definition 2. Let X = [xij] be a p×p matrix and let f(X) be a scalar function
of X. The derivative of f(X) with respect to the matrix X is defined by the p×p
matrix

∇Xf(X) =


∂f(X)
∂x11

· · · ∂f(X)
∂x1p

... . . . ...
∂f(X)
∂xp1

· · · ∂f(X)
∂xpp

 .

In our applications we use X as the robust estimator and Y as the model based
estimator of the covariance matrix. Vemuri et al. [6] defined the total squared
Frobenius divergence (frobt) for matrices, d(X, Y) = ‖X−Y‖2/

√
1+ 4‖Y‖2F .

We call the average 1
2
[d(X, Y) + d(Y,X)] the symmetrised frobt (sfrobt).
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The squared Frobenius divergence (frob) is the numerator ‖X − Y‖2. For
f(Y) = ‖Y‖2F we have ‖∇Yf(Y)‖2F = 4‖Y‖2F .

Jayasumana et al. [4] suggested that the most appropriate way of measuring
the squared distance in the manifold of symmetric positive definite matrices
is d(X, Y) = ‖ logX − log Y‖2F which they called the Log-Euclidean distance
and we call the log-Frobenius distance (froblog). In our simulations we use
froblog, as well as a variant

d(X, Y) =
‖ logX− log Y‖2F√
1+ ‖∇Yf(Y)‖2F

, (2)

where f(Y) = ‖ log Y‖2F and thus ‖∇Yf(Y)‖2F = ‖2VD−1(log(D))VT‖2F . The
measure (2), which we call total squared log Frobenius distance (froblogt),
is inspired by the total Bregman divergences used by Vemuri et al. [6].

We state explicitly that froblogt is not strictly a total Bregman divergence.
In order for it to be a total Bregman divergence the numerator in (2) has
to be in the form f(X) − f(Y) − 〈X− Y,∆f(Y)〉, with the scalar product that
generates the Frobenius norm [6, compare eq. (2), p. 476], which is clearly
not the case in (2). However, there is a strong heuristic thrust towards using
froblogt as defined in (2) in robust inference. The numerator of (2) is
the squared log-Euclidean metric which is known to be the true geodesic
distance introduced by the Riemannian metric on the Riemannian manifold
of symmetric positive definite d × d matrices [4]. The denominator serves
as a norming by the length of the projection of the infinitesimal covariance
matrix estimator change on the tangent space to the manifold ‘at the model
matrix’. A smaller projection length, being in the denominator of (2), implies
big changes in the functional for the same value of the distance between
the matrices, and this means non-robustness of the estimator. Hence, for
robustness purposes, such changes should be minimized. This approach makes
sure that small changes in the parameter value do not affect the model matrix
estimator Σ(θ) drastically.

We use X as the robust estimator and Y as the model based estimator of
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the covariance matrix as this might result in a significant difference between
froblogt and froblog. This is the case we are most interested in. If
the roles of X and Y are swapped, then froblogt is only a known scalar
multiple of froblog so the resulting estimators will coincide.

Vemuri et al. [6] also defined a robust estimator of the covariance matrix
based on the total squared Frobenius distance. Suppose we have n symmetric
positive definite matrices S1, ...,Sn . The t-centre is

∑n
i=1wiSi where

wi =
1/
√
1+ 4‖Si‖2F∑n

j=1 1/
√
1+ 4‖Sj‖2F

.

Our robust estimator of the covariance matrix inspired by the t-centre ap-
proach uses

wi =
1/
√
1+ ‖∇Sif(Si)‖2F∑n

j=1 1/
√
1+ ‖∇Sjf(Sj)‖2F

,

with f(Si) = ‖ log Si‖2F where Si with i = 1, 2, . . . , 11 are the minimum covari-
ance determinant estimators of the covariance matrix based on 0%, 5%, . . . , 50%
contamination, respectively. Being estimates of the covariance matrix, the Si
are symmetric positive definite matrices. The minimum covariance deter-
minant method is a highly robust procedure, with well known asymptotic
properties [2, e.g.].

The minimization of any of the divergences considered above delivers the
minimum distance within the space of functional values, between the variable
matrix Σ(θ) and the robust estimator U of the ‘true’ covariance matrix Σ,
with constraints on the entries of the Σ(θ) matrix. This mimimization is
different from the maximum likelihood estimation procedure where the goal
is to minimize (1) which gives rise to a result equivalent to the maximization
of the likelihood function.
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3 Simulation study

The standard structural equation model considered has two latent exogenous
variables ξ1 and ξ2, one latent endogenous variable η1, and six observable
variables Yi with i = 1, 2, . . . , 6 . The structural equation model is

η1 = γ1ξ1 + γ2ξ2 + ζ1 , Y1 = η1 + ε1 , Y2 = λ21η1 + ε2 ,
Y3 = ξ1 + ε3 , Y4 = λ42ξ1 + ε4 , Y5 = ξ2 + ε5 , Y6 = λ63 + ε6 , (3)

where γ1, γ2, λ21, λ42, λ63 are model parameters, ζ1 ∼ N(0,ψ) , εi ∼ N(0, 1)
for i = 1, 2, . . . , 6 and cov(εi, εj) = 0 for all i 6= j , and[

ξ1
ξ2

]
∼ N

([
0

0

]
,
[
1 φ12
φ12 1

])
.

Two restrictions arise from this model: |φ12| 6 1 and ψ > 0 .

In a condensed form, equation (3) is

Y = Λ

η1ξ1
ξ2

+ ε , (4)

where Y = (Y1, Y2, . . . ,Y6) , ε = (ε1, ε2, . . . , ε6) and

Λ =

1 λ21 0 0 0 0

0 0 1 λ42 0 0

0 0 0 0 1 λ63

T .
The elements λ11, λ32 and λ53 of the matrix Λ were set to one as a standard
approach to guarantee identification of the model. The variance-covariance
matrix of this model is

Σ = ΛΦΛT + I6 ,
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where Φ is the covariance matrix of the vector of latent variables (η1, ξ1, ξ2).
Simple algebra gives

Φ =

γ21 + γ22 + 2γ1γ2φ12 +ψ γ1 + γ2φ12 γ2 + γ1φ12
γ1 + γ2φ12 1 φ12
γ2 + γ1φ12 φ12 1

 .

The unknown parameters are θ = (λ21, λ42, λ63,γ1,γ2,φ12,ψ) . For sample
sizes n = 100, 200, 400 we performed 100 simulations for a particular level of
contamination, ranging from none (0%) to 40%, for the given values of θ.

We contaminated the data by changing the variance of the vector of ε values
from 1 to 72 for a certain percentage of the data, assuming normality which
is equivalent to a normal mixture of N(0, 1) up to N(0, 49) for each of the six
independent components of the vector ε. This allows for a more comfortable
interpretation of the ε components as noise since the mean is preserved at
zero but the variance is inflated. We also experimented with using other
distributions for the contaminated data. Only a subset of the results for data
simulated from a mixture of two normal distributions are given here.

The Matlab function mcd, which is a part of libra: the Matlab Library for
Robust Analysis1 [7], was used to get the robust estimates of the covariance
matrix. The implementation was straightforward. The Matlab function
fmincon was used to minimize the divergence functionals. The Hessian
matrix was not computed. We used the actual assumed parameter values
as the starting value of the vector of parameters to remove any chance of
convergence to another local minimum of the distance measures considered.

We use
∑100

i=1(θj − θ̂ij)
2/100 as a measure of how well the model fits for

each parameter (j = 1, . . . , 7). The simulations presented are for θ =
(2, 3, 3, 2, 0.8,−0.3, 1.5) with contamination 5%, 10%, 20%, 30%. For each
parameter the relative efficacy compared to ml is calculated for each diver-
gence measure, then the average of these is also calculated for each measure

1http://wis.kuleuven.be/stat/robust/LIBRA/LIBRA-home

http://wis.kuleuven.be/stat/robust/LIBRA/LIBRA-home
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which we call the average relative efficacy (are). The last columns of Ta-
bles 1, 2, 3 and 4 report the are. An are under 100% means more efficient
compared to the tradional ml divergence using the normal theory maximum
likelihood estimator of the covariance matrix, and the lower value the better.
The converse means less efficient than the tradional ml divergence using the
normal theory maximum likelihood estimator of the covariance matrix. The
are of a parameter is the measure of how well the model fits the parameter
for the divergence measure divided by the measure of how well the model fits
the parameter for the ml divergence, all multiplied by 100%. Hence the are
for ml is always 100%.

In Tables 1, 2, 3 and 4 ml* is the divergence given by (1) with S replaced by
the robust t-centre like minimum covariance determinant based estimator U.
Also, stvnd is the symmetrised version of tvnd, and vnd is the usual
von Neumann divergence.

When there is no contamination, unsurprisingly, the traditional ml divergence
using S (maximum likelihood estimate of the covariance matrix assuming
multivariate normality) performs best; these results are not presented. When
there is contamination, even when sample sizes are large, the traditional
maximum likelihood divergence using S performs worst. For contaminated
data, most of the time, the traditional ml divergence using U is competitive
for below 20% contamination. For large contamination, the froblogt
divergence performs best. This is also true for 40% contamination results
which are not presented here. There is no point considering contamination
greater than or equal to 50% because this would mean that you do not
trust the model. Increasing the number of simulations will not change the
conclusions. Inreasing the sample sizes above 400 should also not change
the conclusions. Sample sizes much below 100 are not common in data
applications.

Similar conclusions are reached when the contaminated data was simulated
from a Chi-squared distribution centred about zero with 20 degrees of freedom,
and also for a Chi-squared distribution centred about zero with 30 degrees of
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Table 1: Error estimates for 5% contamination.
n = 400 λ21 λ42 λ63 γ1 γ2 φ12 ψ are
ml 0.018 0.10 0.13 0.13 0.065 0.0081 1.83 100%
ml* 0.0028 0.015 0.016 0.010 0.0085 0.0027 0.047 14.2%
tvnd 0.0029 0.019 0.022 0.013 0.0087 0.0026 0.046 15.6%
stvnd 0.0028 0.019 0.022 0.013 0.0087 0.0026 0.047 15.7%
vnd 0.0028 0.019 0.023 0.013 0.0087 0.0026 0.048 15.7%
frob 0.0029 0.019 0.025 0.016 0.0091 0.0026 0.051 16.5%
sfrobt 0.0029 0.019 0.025 0.016 0.0091 0.0026 0.051 16.5%
frobt 0.0029 0.019 0.025 0.016 0.0091 0.0026 0.051 16.5%
froblog 0.0027 0.017 0.018 0.011 0.0085 0.0027 0.049 14.8%
froblogt 0.0027 0.017 0.018 0.011 0.0084 0.0027 0.048 14.8%
n = 200
ml 0.035 0.18 0.16 0.19 0.094 0.015 2.30 100%
ml* 0.0075 0.025 0.023 0.031 0.023 0.0064 0.070 19.3%
tvnd 0.0076 0.033 0.030 0.034 0.024 0.0065 0.066 21.1%
stvnd 0.0076 0.034 0.031 0.034 0.024 0.0066 0.068 21.2%
vnd 0.0077 0.034 0.031 0.034 0.024 0.0066 0.070 21.3%
frob 0.0077 0.034 0.035 0.038 0.024 0.0067 0.067 22.1%
sfrobt 0.0077 0.034 0.035 0.038 0.024 0.0067 0.067 22.1%
frobt 0.0077 0.034 0.035 0.038 0.024 0.0067 0.067 22.1%
froblog 0.0074 0.029 0.025 0.031 0.023 0.0064 0.073 19.9%
froblogt 0.0074 0.029 0.026 0.031 0.023 0.0064 0.071 19.9%
n = 100
ml 0.066 0.54 0.31 0.24 0.17 0.018 2.77 100%
ml* 0.012 0.060 0.050 0.054 0.045 0.012 0.14 23.7%
tvnd 0.012 0.070 0.060 0.059 0.047 0.011 0.13 24.2%
stvnd 0.012 0.071 0.061 0.059 0.047 0.011 0.14 24.4%
vnd 0.012 0.072 0.062 0.059 0.047 0.011 0.14 24.6%
frob 0.012 0.071 0.069 0.068 0.048 0.011 0.14 25.3%
sfrobt 0.012 0.071 0.069 0.068 0.048 0.011 0.14 25.3%
frobt 0.012 0.071 0.069 0.068 0.048 0.011 0.14 25.3%
froblog 0.012 0.064 0.052 0.054 0.046 0.012 0.15 24.3%
froblogt 0.012 0.064 0.053 0.054 0.046 0.012 0.14 24.3%
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Table 2: Error estimates for 10% contamination
n = 400 λ21 λ42 λ63 γ1 γ2 φ12 ψ are
ml 0.035 0.41 0.42 0.28 0.14 0.017 6.12 100%
ml* 0.0031 0.011 0.011 0.013 0.0077 0.0025 0.038 5.61%
tvnd 0.0031 0.013 0.015 0.015 0.0076 0.0025 0.039 5.93%
stvnd 0.0031 0.013 0.015 0.015 0.0076 0.0025 0.038 5.93%
vnd 0.0031 0.013 0.015 0.015 0.0076 0.0025 0.038 5.93%
frob 0.0032 0.013 0.017 0.017 0.0076 0.0025 0.046 6.23%
sfrobt 0.0032 0.013 0.017 0.017 0.0076 0.0025 0.046 6.23%
frobt 0.0032 0.013 0.017 0.017 0.0076 0.0025 0.046 6.23%
froblog 0.0032 0.011 0.012 0.013 0.0076 0.0024 0.037 5.66%
froblogt 0.0032 0.011 0.012 0.013 0.0076 0.0025 0.037 5.67%
n = 200
ml 0.078 0.43 0.52 0.33 0.16 0.024 5.95 100%
ml* 0.0060 0.025 0.026 0.028 0.019 0.0058 0.052 9.18%
tvnd 0.0060 0.030 0.028 0.030 0.019 0.0056 0.051 9.36%
stvnd 0.0060 0.030 0.028 0.030 0.019 0.0056 0.050 9.37%
vnd 0.0060 0.031 0.029 0.030 0.019 0.0056 0.050 9.39%
frob 0.0061 0.030 0.031 0.033 0.018 0.0056 0.053 9.57%
sfrobt 0.0061 0.030 0.031 0.033 0.018 0.0056 0.054 9.57%
frobt 0.0061 0.030 0.031 0.033 0.018 0.0056 0.054 9.56%
froblog 0.0062 0.028 0.026 0.028 0.018 0.0057 0.053 9.20%
froblogt 0.0062 0.028 0.026 0.028 0.018 0.0058 0.051 9.21%
n = 100
ml 0.13 0.76 0.76 0.40 0.25 0.024 8.53 100%
ml* 0.010 0.057 0.042 0.053 0.036 0.013 0.17 14.6%
tvnd 0.010 0.067 0.052 0.060 0.039 0.012 0.18 15.1%
stvnd 0.0099 0.068 0.053 0.060 0.039 0.012 0.17 15.1%
vnd 0.0098 0.068 0.054 0.059 0.039 0.012 0.17 15.2%
frob 0.010 0.069 0.060 0.070 0.040 0.012 0.19 15.7%
sfrobt 0.010 0.069 0.060 0.070 0.040 0.012 0.19 15.7%
frobt 0.010 0.069 0.060 0.070 0.040 0.012 0.19 15.7%
froblog 0.010 0.058 0.045 0.053 0.038 0.013 0.17 14.8%
froblogt 0.010 0.059 0.046 0.053 0.037 0.013 0.16 14.9%
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Table 3: Error estimates for 20% contamination.
n = 400 λ21 λ42 λ63 γ1 γ2 φ12 ψ are
ml 0.080 0.96 1.07 0.70 0.24 0.031 17.46 100%
ml* 0.0052 0.029 0.035 0.047 0.024 0.0040 0.57 6.54%
tvnd 0.0051 0.044 0.056 0.038 0.022 0.0035 0.61 6.57%
stvnd 0.0051 0.042 0.053 0.037 0.022 0.0035 0.57 6.41%
vnd 0.0051 0.040 0.050 0.036 0.022 0.0035 0.54 6.26%
frob 0.0050 0.040 0.056 0.035 0.021 0.0034 0.50 6.15%
sfrobt 0.0050 0.041 0.057 0.035 0.021 0.0034 0.51 6.16%
frobt 0.0050 0.041 0.057 0.034 0.020 0.0034 0.51 6.17%
froblog 0.0057 0.036 0.041 0.041 0.023 0.0036 0.57 6.43%
froblogt 0.0056 0.029 0.027 0.036 0.022 0.0037 0.42 5.93%
n = 200
ml 0.20 1.75 1.45 0.69 0.26 0.036 19.39 100%
ml* 0.0064 0.050 0.047 0.062 0.028 0.0069 0.51 7.31%
tvnd 0.0063 0.055 0.060 0.050 0.028 0.0064 0.56 7.07%
stvnd 0.0063 0.052 0.057 0.049 0.028 0.0064 0.51 6.92%
vnd 0.0063 0.049 0.053 0.048 0.027 0.0064 0.46 6.77%
frob 0.0064 0.051 0.061 0.048 0.027 0.0063 0.47 6.83%
sfrobt 0.0064 0.052 0.061 0.047 0.027 0.0063 0.47 6.84%
frobt 0.0064 0.052 0.062 0.047 0, 027 0.0063 0.47 6.85%
froblog 0.0071 0.049 0.046 0.055 0.027 0.0065 0.48 6.95%
froblogt 0.0071 0.043 0.036 0.051 0.027 0.0067 0.36 6.67%
n = 100
ml 0.78 2.69 2.39 0.76 0.35 0.051 17.32 100%
ml* 0.021 0.10 0.11 0.098 0.062 0.012 0.65 9.96%
tvnd 0.020 0.11 0.13 0.097 0.061 0.012 0.74 10.05%
stvnd 0.020 0.11 0.12 0.094 0.058 0.012 0.65 9.79%
vnd 0.020 0.10 0.11 0.090 0.056 0.013 0.56 9.56%
frob 0.021 0.11 0.12 0.10 0.058 0.012 0.59 9.88%
sfrobt 0.021 0.11 0.12 0.10 0.058 0.012 0.60 9.89%
frobt 0.021 0.11 0.13 0.10 0.057 0.012 0.61 9.89%
froblog 0.021 0.10 0.10 0.091 0.058 0.012 0.57 9.60%
froblogt 0.021 0.091 0.082 0.086 0.058 0.013 0.41 9.32%
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Table 4: Error estimates for 30% contamination.
n = 400 λ21 λ42 λ63 γ1 γ2 φ12 ψ are
ml 0.13 2.43 2.08 0.94 0.30 0.038 28.00 100%
ml* 0.014 0.22 0.21 0.19 0.075 0.0095 3.65 16.2%
tvnd 0.013 0.42 0.51 0.16 0.070 0.0082 4.81 18.7%
stvnd 0.013 0.36 0.44 0.15 0.066 0.0077 4.15 16.9%
vnd 0.013 0.30 0.37 0.14 0.061 0.0072 3.49 15.1%
frob 0.013 0.31 0.40 0.13 0.059 0.0069 3.40 15.1%
sfrobt 0.013 0.32 0.41 0.13 0.059 0.0069 3.48 15.2%
frobt 0.013 0.33 0.43 0.13 0.058 0.0069 3.55 15.4%
froblog 0.016 0.28 0.30 0.15 0.066 0.0078 3.64 15.7%
froblogt 0.015 0.10 0.082 0.078 0.046 0.0064 1.36 9.2%
n=200
ml 0.31 2.84 2.75 0.89 0.31 0.042 40.46 100%
ml* 0.025 0.26 0.24 0.18 0.072 0.013 3.70 15.6%
tvnd 0.023 0.46 0.47 0.14 0.068 0.011 4.84 16.7%
stvnd 0.023 0.40 0.40 0.13 0.064 0.011 4.11 15.3%
vnd 0.022 0.33 0.33 0.12 0.059 0.010 3.38 13.8%
frob 0.022 0.35 0.36 0.11 0.060 0.010 3.41 14.0%
sfrobt 0.022 0.36 0.38 0.11 0.059 0.010 3.49 14.1%
frobt 0.022 0.37 0.39 0.11 0.059 0.010 3.57 14.2%
froblog 0.029 0.30 0.28 0.14 0.064 0.011 3.61 14.6%
froblogt 0.028 0.15 0.11 0.086 0.051 0.011 1.47 10.5%
n=100
ml 4.21 4.70 5.04 1.24 0.49 0.048 38.28 100%
ml* 0.067 0.40 0.38 0.30 0.16 0.017 4.01 17.0%
tvnd 0.066 0.52 0.52 0.26 0.15 0.015 5.32 17.1%
stvnd 0.064 0.43 0.44 0.24 0.14 0.015 4.45 15.7%
vnd 0.063 0.35 0.36 0.22 0.13 0.015 3.61 14.5%
frob 0.068 0.40 0.41 0.23 0.14 0.015 3.86 15.1%
sfrobt 0.068 0.41 0.42 0.23 0.14 0.015 3.98 15.2%
frobt 0.068 0.43 0.44 0.23 0.14 0.015 4.09 15.3%
froblog 0.075 0.33 0.33 0.26 0.14 0.015 3.70 15.1%
froblogt 0.071 0.18 0.18 0.18 0.13 0.016 1.70 12.6%
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freedom. For a Chi-squared distribution centred about zero with six degrees
of freedom and for a Chi-squared distribution centred about zero with ten
degrees of freedom froblogt is best above 25% contamination. Due to page
limitations, these simulations are not presented here.

4 Conclusion

Using the traditional ml divergence measure to estimate the model param-
eters under multivariate normality assumptions does not deliver a good fit
when there is contamination in the data. This ml measure was tailored for
high efficiency under the ideal non-contaminated model so the result is not
surprising. It trades off robustness for high efficiency when the endogenous
variables have a multivariate normal distribution with zero mean. Our simu-
lated data represents a mixture of two normal distributions, thus violating
the normality assumption. This violation does not have a detrimental ef-
fect on both types of robust estimators—the ones previously considered by
Penev and Prvan [5] as well as the new ones presented here. Replacing S in
the traditional ml divergence measure with the robust estimator U of the
covariance matrix delivered a better performance. The t-centre approach
for calculating the recommended robust proximity matrix

∑
iwiSi, with the

recommended weights, avoids the inconvenience of not knowing the actual
percentage of contamination in the data. The averaging of the minimum
covaiance determinant estimators over different levels of contamination avoids
committing to (or having to estimate) a specified level of contamination.

For large contamination, our new froblogt divergence measure performed
much better than the other divergence measures considered. This is due to
our construction of the divergence measure: (i) the numerator is a squared
log-Euclidean metric with superb properties as a squared Riemannian metric
on the Riemannian manifold of symmetric positive definite matrices; (ii) the
norm in the denominator serves to make ensures that non-robust estimators
in the metric are penalized and hence rendered non-competitive.
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On the basis of our experimentation, we recommend froblogt as the
divergence measure of choice when a significant contamination is present.
Further investigations of other divergence measures are possible. Another
research question is related to deriving analytically the influence functions of
the proposed robust estimators. This is a difficult task in general but for a
simple representative class of structural equation models it should be possible
and will allow the comparison of robustness properties via comparing the
influence functions. Although such a comparison is asymptotic in spirit and
may not be quite valid for specific fixed sample sizes, it still represents a
valuable complementary view of robustness in structural equation models.
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