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Introduction to discrete functional analysis
techniques for the numerical study of diffusion

equations with irregular data
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Abstract

We give an introduction to discrete functional analysis techniques for
stationary and transient diffusion equations. We show how these techni-
ques are used to establish the convergence of various numerical schemes
without assuming non-physical regularity of the data. For simplicity of
exposure, we mostly consider linear elliptic equations, and we briefly
explain how these techniques are adapted and extended to non-linear
time-dependent meaningful models (Navier–Stokes equations, flows in
porous media, etc.). These convergence techniques rely on Sobolev
norms and discrete forms of functional analysis results. The discrete
functional analysis tools presented here are versatile and applicable to
a number of numerical methods and models.
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1 Introduction

A number of real-world problems are modelled by partial differential equations
(pdes) which involve some form of singularity. For example, oil engineers deal
with underground reservoirs made of stacked geological layers with different
rock properties, which are described by discontinuous data (permeability
tensor, porosity, etc.) in the corresponding mathematical model. Another
example from reservoir engineering is the modelling of wellbores; the relative
scales of the wellbores (∼ 10–20 cm in diameter) and the reservoir (∼ 1–
2 km wide) justify representing injection and production terms at the wells
by Radon measures [34]. The mathematical analysis of pdes involving
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singular data is challenging. The meanings of the terms in the equations
have to be re-thought; classical derivatives can no longer be used, and weak/
distribution derivatives and Sobolev spaces must be introduced [4]. Beyond
these now well-known tools, other techniques had to be developed for the most
complex models to define appropriate notions of solutions, and to prove their
existence (and uniqueness, if possible): renormalised solutions [10], entropy
solutions [3], monotone operators and semi-groups [4], elliptic and parabolic
capacity [10, 25], etc. The main purpose of this analysis is to ensure that the
models are well-posed; that is, that they make sense from a mathematical
perspective. It is rarely possible to give explicit forms for, or even detailed
qualitative behaviour of, the solutions to the extremely complex models
involved in field applications. Precise quantitative information that can be
used for decision-making is obtained only through numerical approximation.

The role of mathematics in obtaining accurate approximate solutions to pdes
is twofold. First, algorithms have to be designed to compute these solutions.
But, even based on sound reasoning, in some circumstances algorithms can
fail to approximate the expected model [35, Chap. III, Sec. 3]. Benchmarking
(testing the algorithms in well-documented cases) is useful to ensure the
quality of numerical methods, but it cannot cover all situations that may
occur in field applications. The second role of mathematics in the numerical
approximation of real-world models is to provide rigorous analysis of the
properties and convergence of the schemes; this analysis is not restricted to
particular cases and is essential to ensure the reliability of numerical methods
for pdes.

The usual way to prove the convergence of a scheme is to establish error
estimates; if u is the solution to the pde and uh is the solution provided
by the scheme (where h is, for example, the mesh size), then one will try to
establish a bound of the kind

‖uh − u‖X 6 Chα , (1)

where ‖ · ‖X is an adequate norm, α > 0 , and C is a positive constant. Such
an inequality provides an estimate for the h that must be selected in order
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to achieve a pre-determined accuracy of the approximation. However, major
limitations exist:

• Estimates of the kind (1) can be established only if the uniqueness of
the solution u to the pde is known (if (1) holds, then u is unique; often
the proof of (1) mimics a proof of uniqueness of u).

• The constant C usually depends on higher derivatives of u or the pde
data, and (1) therefore requires some regularity assumptions on the
solution or data.

For many non-linear real-world models, including those from reservoir en-
gineering [36] and the famous Navier–Stokes equations, uniqueness of the
solution is not known unless strong regularity properties on the solution are
assumed. These properties cannot be established in field applications. Hence
convergence analysis based on error estimates is doomed to be somewhat
disconnected from applications. This article presents an introduction to tech-
niques that were recently developed to deal with this issue. These techniques
enable the convergence analysis of numerical schemes under assumptions that
are compatible with real-world data and constraints.

Section 2 details the convergence technique on a simple linear stationary
diffusion equation. After recalling some basic energy estimates on the model,
we present the general path (in Section 2.2) to establish the convergence of
schemes without any regularity assumptions on the data; this path relies on
compactness techniques and discrete functional analysis tools, translations to
the discrete setting of functional analysis results for functions of continuous
variables. Section 2.3 shows, using the two-point finite volume scheme and the
non-conforming P1 finite element scheme, how these tools are constructed in
practice. In Section 3 we discuss the extension of this convergence technique to
non-linear and non-stationary models, which are more realistic representations
of physical phenomena. We briefly show that virtually no adaptation is
required from the technique used in the linear setting to deal with the
simplest non-linear models. We then give a brief overview of physical models
whose numerical analysis was successfully tackled using discrete functional
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analysis tools. These include the Navier–Stokes equations, pdes involved in
glaciology, models of oil recovery, and models of melting materials.

2 Convergence by compactness techniques

2.1 Model and preliminary considerations

For our initial presentation consider the linear diffusion equation{
− div(A∇u) = f in Ω,
u = 0 on ∂Ω.

(2)

In the context of reservoir engineering, (2) corresponds to a steady single-
phase single-component Darcy problem with no gravitational effects [11]; u
is the pressure and A is the matrix-valued permeability field. This field is
usually considered piecewise constant (constant in each geological layer), and
it is therefore discontinuous. Equation (2) cannot be considered under the
classical sense, that is, with div and ∇ denoting standard derivatives, and
must be re-written in a weak form. This weak form is obtained by multiplying
by a test function v which vanishes on ∂Ω and by using the Stokes formula [4]:{

Find u ∈ H10(Ω) such that for all v ∈ H10(Ω) ,∫
Ω
A(x)∇u(x) · ∇v(x)dx =

∫
Ω
f(x)v(x)dx .

(3)

Here, H10(Ω) is the Sobolev space of functions v ∈ L2(Ω) (square-integrable
functions equipped with the norm ‖v‖2

L2(Ω)
=
∫
Ω
|v(x)|2 dx) that have a weak

(distribution) gradient ∇v in L2(Ω)d and a zero value (trace) on ∂Ω. Under
the following assumptions, all terms in (3) are well-defined:

1. Ω is a bounded open set of Rd (d > 1) and f ∈ L2(Ω) ;

2. A : Ω 7→Md(R) is a measurable matrix-valued mapping;
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3. There exists 0 < a 6 a <∞ such that |A(x)ξ| 6 a|ξ| and A(x)ξ · ξ >
a|ξ|2 for almost every x ∈ Ω and all ξ ∈ Rd.

Here, | · | is the Euclidean norm on Rd. Take v = u in (3) and apply the
Cauchy–Schwarz inequality on the right-hand side to find

a‖|∇u|‖2L2(Ω) 6
∫
Ω

A(x)∇u(x) · ∇u(x)dx =
∫
Ω

f(x)u(x)dx

6 ‖f‖L2(Ω)‖u‖L2(Ω) , (4)

where ‖| · |‖ is the L2(Ω) norm of the Euclidean norm. Essential to the analysis
of elliptic equations is the Poincaré inequality:

for all v ∈ H10(Ω) , ‖v‖L2(Ω) 6 diam(Ω)‖|∇v|‖L2(Ω) . (5)

Substituted into (4), this inequality leads to the following energy estimate, in
which the left-hand side defines the norm in H10(Ω):

‖u‖H1
0(Ω) := ‖|∇u|‖L2(Ω) 6 diam(Ω)a−1‖f‖L2(Ω) . (6)

2.2 General path for the convergence analysis

Estimate (6) shows that H10(Ω) is the natural energy space of problem (2).
This estimate is at the core of the theoretical study of (2) and its non-linear
variants, partly due to the Rellich compactness theorem [4].

Theorem 1 (Rellich compact embedding). If Ω is a bounded subset of Rd,
d > 1 , and if (vn)n∈N is bounded in H10(Ω), then (vn)n∈N has a subsequence
that converges in L2(Ω). Furthermore, any limit in L2(Ω) of a subsequence
of (vn)n∈N belongs to H10(Ω).

This theorem justifies the general path for a convergence analysis that is
applicable without smoothness assumption on the data or the solution, and
that can be adapted to non-linear equations. As described by Droniou [14],
this path to prove convergence comprises three steps.
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1. Establish a priori energy estimates similar to (6) on the solutions to the
scheme in a mesh- and scheme-dependent discrete norm that mimics
the H10 norm.

2. Prove a compactness result which is the discrete equivalent of Theorem 1:
if (uh)h is a sequence of discrete functions that are bounded in the norms
introduced in step 1, then as the mesh size h goes to zero there is a
subsequence of (uh)h that converges (at least in L2(Ω)) to a function
u ∈ H10(Ω) .

3. Prove that if u ∈ H10(Ω) is the limit in L2(Ω) as h→ 0 of solutions to
the scheme, then u satisfies (3).

Remark 2. The existence of a solution to the pde does not need to be known.
It is obtained as a consequence of the convergence proof.

The discrete H10(Ω) norm is dictated by the scheme. It must be a norm for
which (i) a priori estimates on the numerical solutions can be obtained, and
(ii) the compactness result in step 2 holds. However, there is a norm applicable
to a number of numerical methods. Let us assume that Ω is polytopal
(polygonal in 2D, polyhedral in 3D, etc.), and that M is a mesh of Ω made of
polytopal cells. We denote the size of M by hM = maxK∈M diam(K) and the
space of piecewise constant functions in the cells by XM. We identify v ∈ XM

with the family of its values (vK)K∈M in the cells. The set of all faces of the
mesh (edges in 2D) is EM and |σ| denotes the (d− 1)-dimensional measure of
a face σ (i.e., length in 2D, area in 3D). We take one point xK in each cell K,
and we let dK,σ = dist(xK,σ) (see Figure 1). If σ is an interface between
two cells K and L, then we define dσ = dK,σ + dL,σ ; otherwise, dσ = dK,σ

with K the unique cell whose σ is an face.

A discrete H10 norm on XM is defined by

‖v‖2
H1

0,M
:=
∑
σ∈EM

|σ|dσ

(
vK − vL
dσ

)2
. (7)

Here, and in subsequent similar sums, we use the convention that K and L
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Figure 1: Notations associated with a polytopal mesh.
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are the cells on each side of σ, and that vL = 0 if σ ⊂ ∂Ω is a face of K. This
choice accounts for the homogeneous boundary conditions on ∂Ω.

The usefulness of the discrete H10 norm, in view of the convergence path 1–3,
is apparent in the two following theorems, proved by Eymard et al. [30].
Theorem 3 is the key to reproducing, at the discrete level, the sequence of
inequalities (4)–(6), leading to the energy estimates in convergence step 1;
this requires the scheme to have suitable coercivity properties. Theorem 4
covers step 2. Convergence step 3 is more scheme-dependent and relies on
consistency and limit-conformity properties of the scheme. Theorems 3 and 4
are examples of discrete functional analysis results.

Theorem 3 (Discrete Poincaré inequality). Let M be a mesh of Ω and set

θM = max
[
dK,σ

dL,σ
: σ ∈ EM and K,L are cells on each side of σ

]
. (8)

If θ > θM , then there exists C1 only depending on θ such that for any v ∈ XM

we have ‖v‖L2(Ω) 6 C1‖v‖H1
0,M

.

Theorem 4 (Discrete Rellich theorem). Let (Mn)n∈N be a sequence of dis-
cretisations of Ω such that (θMn

)n∈N is bounded and hMn
→ 0 as n→∞ . If

vn ∈ XMn
is such that (‖vn‖H1

0,Mn
)n∈N is bounded, then (vn)n∈N is relatively

compact in L2(Ω). Furthermore, any limit in L2(Ω) of a subsequence of
(vn)n∈N belongs to H10(Ω).
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2.3 Examples

Besides Theorems 3 and 4, an important feature of the discrete norm (7) is its
versatility; it is suitable for numerous schemes, even with degrees of freedom
that are not cell-centred. Here we give two practical illustrations of the usage
of the convergence path 1–3 and of the discrete norm (7).

2.3.1 Two-point flux approximation finite volume scheme

The two-point flux approximation (tpfa) scheme for (2) is given by flux
balances (obtained by integrating (2) over the cells), and a finite difference
approximation of the flux −

∫
σ
A(x)∇u(x) ·nK(x)dx using the two unknowns

on each side of σ:

for all K ∈M ,
∑
σ∈EK

FK,σ =

∫
K

f(x)dx ; (9)

for all K ∈M and for all σ ∈ EK , FK,σ = τσ(uK − uL) . (10)

Here, EK is the set of faces of a cell K ∈M , and the transmissivity τσ ∈ (0,∞)
depends on A and the local mesh geometry [28]. Under usual non-degeneracy
assumptions on the mesh, there exists C2 > 0 only depending on a and a
such that

τσ > C2
|σ|

dσ
. (11)

Convergence step 1 The inequalities (4)–(6) that lead to the a priori
estimates on u are obtained by the following sequence of manipulations:
(i) multiply (2) by v = u and integrate the resulting equation; (ii) apply the
Stokes formula; and (iii) use the Poincaré inequality. Since the flux balance (9)
is the discrete expression of (2), we reproduce these manipulations at the
discrete level.
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(i). Multiply and integrate: we multiply (9) by vK = uK and we sum on
K ∈M . Accounting for (10), this gives∑
K∈M

∑
σ∈EK

τσ(uK−uL)uK =
∑
K

[∫
K

f(x)dx

]
uK =

∫
Ω

f(x)u(x)dx . (12)

(ii). Apply the Stokes formula: this consists of gathering by faces the sum in
the left-hand side of (13). The contributions of a face are τσ(uK−uL)uK
and τσ(uL − uK)uL = −τσ(uK − uL)uL . Hence, using (11) and the
Cauchy–Schwarz inequality on the right-hande side, we find

C2
∑
σ∈EM

|σ|

dσ
(uK − uL)

2 6
∑
σ∈EM

τσ(uK − uL)
2 6 ‖f‖L2(Ω)‖u‖L2(Ω) . (13)

(iii). Use the Poincaré inequality : the left-hand side of (13) is C2‖u‖2H1
0,M

.
Invoking the discrete Poincaré inequality (Theorem 3), we find C3 only
depending on an upper bound of θM such that

‖u‖H1
0,M

6 C3‖f‖L2(Ω) . (14)

Estimate (14) is the discrete equivalent of (6) for the solution of the
tpfa scheme.

Convergence step 2 This step is straightforward from (14) after applying
the discrete Rellich Theorem 4. This estimate shows that if (Mn)n∈N is a
sequence of meshes and if un is the solution of the tpfa scheme on Mn, then
(‖un‖H1

0,Mn
)n∈N remains bounded. Hence, up to a subsequence, un converges

in L2(Ω) towards some function u ∈ H10(Ω) .

Convergence step 3 As mentioned above, proving that u is the solution
to (3) hinges on adequate consistency properties enjoyed by the scheme. Here,
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it all comes down to the proper choice of transmissivities τσ, and to the
geometry of the mesh. By taking ϕ ∈ C∞

c (Ω) , multiplying (9) by ϕ(xK)
when M = Mn , and summing over all K we find∑

K∈Mn

∑
σ∈EK

τσ [(un)K − (un)L]ϕ(xK) =
∑
K∈Mn

∫
K

f(x)ϕ(xK)dx .

We then gather the sums in the left-hand side by terms involving (un)K:∑
K∈Mn

(un)K
∑
σ∈EK

τσ [ϕ(xK) −ϕ(xL)] =
∑
K∈Mn

∫
K

f(x)ϕ(xK)dx , (15)

where ϕ(xL) = 0 if σ ∈ EK lies on ∂Ω. The choice of τσ, the geometri-
cal assumptions constraining the meshes of the tpfa method (that is, an
orthogonality requirement of (xKxL) and σ for a scalar product induced
by A−1), and the smoothness of ϕ, ensure that

∑
σ∈EK

τσ[ϕ(xK) −ϕ(xL)] =
−
∫
K
div(A∇ϕ) + |K|O(hMn

) , where |K| is the d-dimensional measure of K.
Relation (15) thus gives

−

∫
Ω

un(x) div(A∇ϕ)(x)dx+O(‖un‖L1(Ω)hMn
) =

∫
Ω

f(x)ϕ(x)dx+O(hMn
) ,

where we use the smoothness of ϕ on the right-hand side. By the convergence
of un to u in L2(Ω), in the limit n → ∞ we find that, for all ϕ ∈ C∞

c (Ω) ,
u ∈ H10(Ω) satisfies

−

∫
Ω

u(x) div(A∇ϕ)(x)dx =
∫
Ω

f(x)ϕ(x)dx ,

which is classically equivalent to (3).
Remark 5. The above reasoning apparently only shows the convergence of
a subsequence of (un)n∈N . However, since there is only one possible limit
(namely, the unique solution u to (3)), this proves that the whole sequence
(un)n∈N converges to u.



2 Convergence by compactness techniques C112

2.3.2 Non-conforming P1 finite element

Usage of the discrete norm (7) is not limited to numerical methods with
only/primarily cell unknowns. Let us consider a triangulation T of 2D poly-
gonal domain Ω (what follows also generalises to tetrahedral meshes of a
3D polyhedral domain). The non-conforming Crouzeix–Raviart P1 finite
element [9] for (2) has degrees of freedom at the midpoints (xσ)σ∈ET

of the
triangulation’s edges. The discrete space YT of unknowns is made of families
of reals u = (uσ)σ∈ET

, where uσ = 0 if σ ⊂ ∂Ω . These families are identified
with functions u : Ω → R that are piecewise linear on the mesh, with
values (uσ)σ∈ET

at (xσ)σ∈ET
. The non-conforming P1 approximation of (3) is{

Find u ∈ YT such that for all v ∈ YT ,∫
Ω
A(x)∇bu(x) · ∇bv(x)dx =

∫
Ω
f(x)v(x)dx ,

(16)

where ∇b is the broken gradient and (∇bu)|K is the constant gradient of the
linear function u in the triangle K ∈ T .

Convergence step 1 To benefit from Theorems 3 and 4, we need to
introduce the norm (7), which requires some choice of cell unknowns. Here,
the most natural choice is to set uK equal to u at the centre of gravity xK
of K. Since u is linear in K this gives

for all K ∈ T , uK = u(xK) =
1

3

∑
σ∈EK

uσ .

This choice associates (in a non-injective way) to each u ∈ YT a ũ = (uK)K∈T ∈
XT . Two simple inequalities, both based on the linearity of u inside each
triangle, are useful to conclude step 1.

Lemma 6. Let ηT be the maximum over K ∈ T of the ratio of the exterior
diameter of K over the interior diameter of K. Assume that η > ηT . Then



2 Convergence by compactness techniques C113

there exists C4 only depending on η such that, for all u ∈ YT ,

‖ũ‖H1
0,T

6 C4‖|∇bu|‖L2(Ω) , (17)

‖ũ− u‖L2(Ω) 6 hT‖|∇bu|‖L2(Ω) . (18)

Proof: Start with (17). There exists C5 only depending on η such that for
all σ ∈ K we have dist(xK, xσ) 6 C5dσ . Hence, since u is linear inside each
triangle,

|ũK − ũL|

dσ
6 C5

|u(xK) − u(xσ)|

dist(xK, xσ)
+ C5

|u(xL) − u(xσ)|

dist(xL, xσ)
6 C5|(∇bu)|K|+ C5|(∇bu)|L| . (19)

By squaring (19), multiplying by |σ|dσ, summing over the edges and using∑
σ∈EK

|σ|dσ 6 C6|K| with C6 only depending on η, we obtain (17). The proof
of (18) is simpler and follows directly from ũ(x) − u(x) = u(xK) − u(x) =
(∇bu)|K · (xK − x) for all x ∈ K . ♠

Equipped with (17) and (18), we now delve into convergence step 1. Sub-
stituting v = u in the formulation (16) of the scheme, the coercivity of A
entails

a‖|∇bu|‖2L2(Ω) 6 ‖f‖L2(Ω)‖u‖L2(Ω) .

Using (18) and hT 6 diam(Ω) , this gives

a‖|∇bu|‖2L2(Ω) 6 ‖f‖L2(Ω)

[
‖ũ‖L2(Ω) + diam(Ω)‖|∇bu|‖L2(Ω)

]
.

A bound on ηT implies a bound on θT (defined by (8)). Hence, the discrete
Poincaré inequality (Theorem 3) and (17) lead to

‖|∇bu|‖L2(Ω) 6 [C1C4 + diam(Ω)]a−1‖f‖L2(Ω) . (20)

Estimate (20) is the discrete equivalent of the energy estimate (6). In con-
junction with (17) it gives

‖ũ‖H1
0,T

6 C4[C1C4 + diam(Ω)]a−1‖f‖L2(Ω) . (21)
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Convergence step 2 This is similar to the same step in the tpfa method.
If (Tn)n∈N is a sequence of uniformly regular triangulations whose size tends
to zero, then combining (21) (with T = Tn) and the discrete Rellich theorem
(Theorem 4) shows that ũn → u in L2(Ω) up to a subsequence, for some
u ∈ H10(Ω) . Moreover, by (18) and (20), we also have un → u in L2(Ω).

Convergence step 3 Assume now that

∇bun → ∇u weakly in L2(Ω)d as n→∞ . (22)

For ϕ ∈ C∞
c (Ω) we define the interpolant vn ∈ YTn

by (vn)σ = ϕ(xσ) . The
smoothness of ϕ ensures that vn → ϕ in L∞(Ω) and ∇bvn → ∇ϕ in L∞(Ω)d.
The convergence (22) therefore allows us to pass to the limit in (16) written for
un and vn. We deduce that u ∈ H10(Ω) satisfies

∫
Ω
A∇u · ∇ϕdx =

∫
Ω
fϕdx

for all smooth ϕ, which is equivalent to (3).

The proof of (22) relies on well-established techniques. By (20) the sequence
(∇bun)n∈N is bounded, and therefore converges weakly in L2(Ω)d to some χ,
up to a subsequence. We just need to prove that χ = ∇u . Take ψ ∈ C∞

c (Ω)d

and, by the Stokes formula in each triangle,∫
Ω

∇bun(x) ·ψ(x)dx =
∑
K∈Tn

∫
K

∇bun(x) ·ψ(x)dx

=
∑
K∈Tn

∫
∂K

(un)|K(x)nK ·ψ(x)dS(x) −
∑
K∈Tn

∫
K

un(x) divψ(x)dx

= Zn −

∫
Ω

un(x) divψ(x)dx , (23)

where nK is the outer normal to K and (un)|K denotes values on σ from K.
Since ψ = 0 on ∂Ω and ψ · nK + ψ · nL = 0 on the interface σ between
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K and L, we have∑
K∈Tn

∑
σ∈EK

∫
σ

(un)σnK ·ψ(x)dS(x)

=
∑

σ∈E,σ⊂Ω

∫
σ

(un)σ[nK ·ψ(x) + nL ·ψ(x)]dS(x) = 0 ,

and thus

Zn =
∑
K∈Tn

∑
σ∈EK

∫
σ

[(un)|K(x) − (un)σ]nK ·ψ(x)dS(x) .

By the definition of (un)σ we have
∫
σ
[(un)|K(x) − (un)σ]dS(x) = 0 . Using

|(un)|K − (un)σ| 6 diam(K)|(∇bun)|K| and the smoothness of ψ, we infer

|Zn| =

∣∣∣∣∣∑
K∈Tn

∑
σ∈EK

∫
σ

[(un)|K(x) − (un)σ]nK · [ψ(x) −ψ(xσ)]dS(x)

∣∣∣∣∣
6 CψhMn

∑
K∈Tn

∑
σ∈EK

|σ|hK|(∇bun)|K| 6 3CψC7hMn
‖|∇bun|‖L1(Ω) ,

with C7 not depending on n (we used the regularity assumption on Tn to
write |σ|hK 6 C7|K|). Invoking the discrete energy estimate (20), we deduce
that Zn → 0 and we therefore evaluate the limit of (23) since un → u

in L2(Ω) and ∇bun → χ weakly in L2(Ω)d. This gives
∫
Ω
χ(x) ·ψ(x)dx =

−
∫
Ω
u(x) divψ(x)dx , which proves that χ = ∇u as required.

3 Extension to non-linear models

The previous technique, based on the convergence path 1–3 and on the discrete
Rellich theorem and the discrete Poincare inequality, would not be very useful
if it only applied to the linear diffusion equation (2). Convergence of numerical
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methods for this equation is well-known, and best obtained through error
estimates. The power of the compactness techniques presented above is that
they seamlessly apply to non-linear models, including models of physical
relevance such as oil recovery and the Navier–Stokes equations. Presenting a
complete review of these techniques on such models is beyond the scope of
this article, but we give an overview of some of the latest developments.

3.1 Stationary equations

3.1.1 Academic example

We first show with an academic example how to apply the previous techniques
to a non-linear model. We consider{

− div[A(·,u)∇u] = F(u) in Ω ,
u = 0 on ∂Ω ,

(24)

where F : R 7→ R is continuous and bounded, and A : Ω × R 7→ Md(R) is
a Caratheodory function (measurable with respect to x ∈ Ω , continuous
with respect to s ∈ R) such that for all s ∈ R the function A(·, s) satisfies
assumption 3 with a and a not depending on s. The weak form of (24)
consists of (3) with f(x) and A(x) replaced with F(u(x)) and A(x,u(x)),
respectively.

As in the linear model, establishing the convergence of a numerical method
for (24) by using discrete functional analysis techniques consists of mimicking
estimates on the continuous equation. Here, these estimates are obtained as
for the linear model; substituting v = u in the weak form of (24) and using
the coercivity of A, the bound on F and the Poincaré inequality, it is seen
that u satisfies

‖u‖H1
0(Ω) 6 diam(Ω)a−1|Ω|1/2‖F‖L∞(R) .
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Writing a numerical method for (24) using a method for the linear equation (2)
is usually quite straightforward: all f(x) and A(x) appearing in the definition
of the method (e.g., through τσ for the tpfa method) have to be replaced
with F(u(x)) and A(x,u(x)), where u is the approximation sought through
the scheme. A quick inspection of convergence steps 1 in Sections 2.3.1
and 2.3.2 shows that the discrete energy estimates (14), (20) and (21) hold
with ‖f‖L2(Ω) replaced with |Ω|1/2‖F‖L∞(R) .

Convergence step 2 then follows from Theorem 4 exactly as in the linear case,
and we find u ∈ H10(Ω) such that up to a subsequence un → u in L2(Ω).
This ensures that F(un) → F(u) in L2(Ω), and that up to a subsequence
A(·,un) → A(·,u) almost everywhere while remaining uniformly bounded.
These convergences enable us to evaluate the limit of the scheme by following
the exact same technique as in convergence step 3 for the linear model. This
establishes that u is a weak solution of (24).
Remark 7. Although the strong convergence of un to u is not necessary
in the linear case (weak convergence would suffice), it is essential for non-
linear models such as (24). Indeed, if (un)n∈N only converges weakly, then
F(un) and A(·,un) may not converge to the correct limits F(ū) and A(·, ū),
respectively.

3.1.2 Physical models

As mentioned in the introduction, the strength of a convergence analysis via
compactness techniques is that it applies to fully non-linear models that are
relevant in a number of applications.

Elliptic equations with measure data Equations of the form (2) appear
in models of oil recovery, in which f models wells. The relative scales of the
reservoir and the wellbores justify taking a Radon measure for this source
term [34, 26]. The ensuing analysis is more complex. To start with, the weak
formulation (3) is no longer suitable [3, 10]. Moreover, due to the singularity
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of the source term, the solution has very weak regularity properties and may
not be unique. This prevents any proof of error estimates for numerical
approximations of these models.

Discrete functional analysis tools were developed to establish the convergence
of the tpfa finite volume scheme for diffusion and (possibly non-coercive)
convection-diffusion equations with measures as source terms [37, 24]. Key
elements to obtaining a priori estimates on the solutions to these equations are
the Sobolev spacesW1,p

0 (Ω) (which isH10(Ω) if p = 2), and the Sobolev embed-
dings. The corresponding numerical analysis requires the discrete W1,p

0 norm
on XM,

‖v‖p
W

1,p
0 ,M

:=
∑
σ∈EM

|σ|dσ

(
vK − vL
dσ

)p
,

in order to generalise the discrete Poincaré and Rellich theorems to a discrete
non-Hilbertian setting, and to establish discrete Sobolev embeddings, that is,
if p ∈ (1,d) and q 6 dp

d−p
, then

‖v‖Lq(Ω) 6 C‖v‖W1,p
0 ,M . (25)

Remark 8. The most efficient proofs of the discrete Poincaré and Rellich
theorems use the discrete Sobolev embeddings [30, 19].
Remark 9. The numerical study of (2) with f measure is currently (mostly)
limited to the tpfa scheme, since, in general, no other method has the
structure that enables the mimicking of the continuous estimates [14].

Leray–Lions and p-Laplace equations These models are non-linear
generalisations of (2) that appear in models of gaciology [39]. They have a
more severe non-linearity than (24) since they involve both u and ∇u. The
general form of these equations is obtained by replacing div(A∇u) in (2) with
div[a(·,u,∇u)], where a : Ω× R× Rd 7→ Rd satisfies growth, monotonicity
and coercivity assumptions. The simplest form is possibly the p-Laplace
equation − div(|∇u|p−2∇u) = f for p ∈ (1,∞) .
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Uniqueness may fail for these equations [21, Remark 3.4], which completely
prevents classical error estimates for their numerical approximations. Com-
pactness techniques were used to study the convergence of at least three differ-
ent schemes for Leary–Lions equations: the mixed finite volume method [13];
the discrete duality finite volume method [1]; and a cell-centred finite volume
scheme [29]. These studies make use of discrete scheme-dependentW1,p

0 norms
and related discrete Rellich and Poincaré theorems. They also require an
(easy) adaptation to the discrete setting of the Minty monotonicity method
to deal with the non-linearity involving ∇u.

3.2 Time-dependent and Navier–Stokes equations

Studying non-linear time-dependent models requires space–time compactness
results. In the context of Sobolev spaces, these results are usually vari-
ants of the Aubin–Simon theorem [2, 40] which, roughly speaking, ensures
the compactness in Lp(Ω × (0, T)) of a sequence (un)n∈N, provided that
(∇un)n∈N is bounded in Lp(Ω× (0, T))d and that (∂tun)n∈N is bounded in
Lq(0, T ;W−1,r(Ω)), whereW−1,r(Ω) = (W1,r ′

0 (Ω)) ′ . These are natural spaces
in which solutions to parabolic pdes can be estimated.

Carrying out the numerical analysis of these equations with irregular data
necessitates the development of discrete versions of the Aubin–Simon the-
orem; this often includes designing a discrete dual norm mimicking the
norm in W−1,r ′(Ω). This analysis was done for various schemes and mod-
els: transient Leray–Lions equations [21], including non-local dependencies
of a(x,u,∇u) with respect to u (as in image segmentation [33]); a model
of miscible fluid flows in porous media from oil recovery [6, 7]; the Stefan
model of melting material [27]; and Richards’ model and multi-phase flows in
porous media [32]. Discrete Aubin–Simon theorems also sometimes need to
be completed with other compactness results, such as compactness results in-
volving sequences of discrete spaces [38] or discrete compensated compactness
theorems [17], to deal with degenerate parabolic pdes.
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All these compactness results only provide strong convergence in a space–time
averaged norm (e.g., Lp(Ω × (0, T)) for some p < ∞). However, Droniou
et al. [17, 22] recently developed a technique to establish a uniform-in-time
convergence result (i.e., in L∞(0, T ;L2(Ω))) by combining the initial averaged
convergences, energy estimates from the pde, and a discontinuous weak
Ascoli–Arzela theorem. This strong uniform convergence corresponds to the
needs of end-users, who are usually more interested in the behaviour of the
solution at the final time rather than averaged over time.

Navier–Stokes equations The regularity and uniqueness of the solution
of the Navier–Stokes equations is a famous open problem. Therefore, as
explained in the introduction, the convergence analysis of numerical schemes
for these equations cannot be based on error estimates. If it is to be rigorously
carried out under reasonable physical assumptions, then this convergence
analysis can only be done through compactness techniques.

Let us first consider the continuous case. Because of the term (u · ∇)u in

∂tu− ∆u+ (u · ∇)u+∇p = f , (26)

evaluating the limit from a sequence of approximate solutions (un)n∈N requires
a strong space–time L2 compactness on (un)n∈N (since (∇un)n∈N converges
only in L2(Ω× (0, T))d-weak). The Kolmogorov theorem ensures this strong
compactness on (un)n∈N provided we can control the space-translates and
time-translates of the functions. The space translates are naturally estimated
thanks to the bound on (∇un)n∈N, and the the time translates ‖un(·+ τ, ·)−
un‖L1(0,T ;L2(Ω)) are estimated by∫
Ω

|un(t+τ, x)−un(t, x)|2 dx =
∫
Ω

∫ t+τ
t

∂tun(s, x)[un(t+τ, x)−un(t, x)]dxds .

Equation (26) is then used to substitute ∂tun in terms of un and its space
derivatives (since divun = 0 , the term involving ∇pn disappears). Bounding
the term (un ·∇)un×un that appears after this substitution requires Sobolev
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estimates on (un)n∈N ; these ensure that, only considering the space integral,
un ∈ L6(Ω) and thus |un|2|∇un| ∈ L6/5(Ω) (wihout Sobolev estimates, un ∈
L2(Ω) and |un|

2|∇un| is not even integrable).

The same issue arises in the convergence analysis of numerical methods for
Navier–Stokes equations. Discrete Sobolev estimates of the kind (25) are
required to estimate the time-translates of the approximate solutions and
ensure the convergence towards the correct model. Droniou and Eymard [16]
did this for the mixed finite volume method, and Chenier et al. [8] considered
an extension of the marker-and-cell scheme. Both references establish more
scheme-specific Sobolev embeddings than (25), but this general inequality is
sufficient for the analyses carried out in these works.

4 Conclusions and perspectives

We presented techniques that enable the convergence analysis of numerical
schemes for pdes under assumptions that are compatible with field applica-
tions. In particular, discontinuous coefficients or fully non-linear physically
relevant models can be handled. These techniques do not require the unique-
ness or regularity of the solutions and are based on discrete functional analysis
tools—that is, the translation to the discrete setting of the functional analysis
used in the study of the pdes.

These discrete tools were adapted to a number of schemes, including the hybrid
mixed mimetic family [20] (which contains the hybrid finite volumes [30], the
mimetic finite differences [5] and the mixed finite volumes [15]), the discrete
duality finite volumes [1], and the discontinuous Galerkin methods [12].

It might appear from our brief introduction that the discrete Sobolev norms
and all related results (Poincaré, Rellich, etc.) require specific adaptations
for each scheme or model. This is usually not the case. A framework was
recently designed, the gradient scheme framework [31, 21, 19], that enables
the unified convergence analysis of many different schemes for many diffusion
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pdes. The idea is to identify a set of five properties that are not related to
any model but are intrinsic to the discrete space and operators (gradient, etc.)
of the numerical methods. Convergence proofs of numerical approximations of
many different models can be carried out based on only these five properties
(sometimes even fewer). Generic discrete functional analysis tools exist to
ensure that several well-known schemes (including meshless methods) satisfy
these properties [23], and therefore that the aforementioned convergence
results apply to these schemes. The gradient scheme framework covers several
boundary conditions, and also guided the design of new schemes [31, 18].
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