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Abstract

We present a new inverse modelling approach for integrating satellite
detections of volcanic ash with dispersion models. We demonstrate
the utility of this approach in estimating the ash column height in
the February 2014 eruption of Mount Kelut in Java, Indonesia. We
show that the inferred height is consistent with estimates obtained by
other remote sensing techniques. This method may be used to obtain
estimates of model parameters such as ash column height in cases where
no such information is available or is subject to significant uncertainty.
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1 Introduction

Ash emitted from volcanic eruptions poses a significant hazard to aviation,
mainly due to its deleterious effects on aircraft engines [1]. The monitoring
and forecasting of ash during volcanic eruptions is required in order to manage
this risk. The Australian Bureau of Meteorology operates the Darwin Volcanic
Ash Advisory Centre (vaac) which provides warnings to aviation stakeholders
over a region that includes Australia, Indonesia, and Papua New Guinea.

Dispersion modelling is the main tool used for forecasting the transport
of ash in the atmosphere. Lagrangian dispersion models such as hysplit
(hybrid single particle Lagrangian integrated trajectory) [2], which is used
operationally by the Darwin vaac, calculate the trajectories of particles
emitted by the eruption, driven by gridded wind fields and sub-grid turbulence.
A key issue in the use of dispersion models is the description of the source
function, which is a representation of the processes that inject the ash into the
atmosphere, specifically its spatial (and perhaps temporal) form. Currently,
the operational practice is to assume a line source extending from the volcano
summit to a specified maximum altitude. Remote sensing using the mtsat
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geostationary satellite is the principal means by which ash is detected in the
atmosphere. However, there are significant uncertainties in the detection of
volcanic ash [3]. Moreover, even when ash is successfully detected, there are
still significant challenges in estimating ash properties such as altitude and
column loadings [4]. In view of these challenges, it is crucial to integrate the
dispersion model simulations with satellite retrievals in order to gain a more
coherent picture of the transport of ash. Data assimilation, as this procedure
is generally known, has a long history in meteorology, but it is only relatively
recently that such approaches have been attempted in volcanic ash dispersion
modelling. Several studies investigated the problem of reconstructing ash and
SO2 emission profiles associated with recent eruption events [5, 6, 7].

In this article we demonstrate how information about ash location obtained
from satellite data is combined with information from dispersion models to
yield improved estimates of the spatial form of the source function, particularly
its vertical structure (i.e., the emission profile), using inverse modelling. Our
method differs in some respects from the method used in the aforementioned
studies [5, 6, 7]. Rather than attempting to reconstruct the emission profile in
detail, we specify a general form that is dependent on only a few parameters.
For example, we focus on a cylindrical source in which the only adjustable
parameter is the top altitude (the ash column height). We then form a
parameter grid consisting of possible top altitude values and perform a
systematic grid search by running several dispersion model simulations for
each point on the parameter grid. The dispersion model simulations are
compared against observations in the form of satellite retrievals by using
pattern correlations from which optimal parameter values are then obtained.
This avoids some of the difficulties associated with other inverse modelling
approaches, such as negative emission rates, which have to be corrected in an
ad hoc fashion. The other point of difference is that our approach is inherently
probabilistic (although a strictly deterministic scheme is also investigated
and will be discussed further in this article). The uncertainty is built into
the system by selecting a set of optimal values with similar values of pattern
correlations. Section 4 shows that this makes the system more robust to
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model and observation errors.

2 Inverse modelling strategy

Let the vector d represent a set of observations such as mass column loading
(i.e., vertically integrated concentration) at various gridded locations and
let g(m) represent the corresponding gridded model outputs which are depen-
dent on the choice of model parameters m. Here, m represents the height
of the ash column but in general it could represent other parameters related
to the source term such its base altitude, diameter, and eruption duration,
each of which would be represented as a component of m. We formulate the
inverse problem as that of finding the values of m that maximise the pattern
correlation

r(m) =
d ′ · g ′(m)

‖d ′‖‖g ′(m)‖
, (1)

where the prime symbols denote deviations from mean quantities; that is,
d ′ = d− d̄1 and g ′(m) = g(m) − ḡ(m)1 with mean values d̄ = 1 · d/1 · 1
and ḡ(m) = 1 ·g(m)/1 ·1. Here, the dot operator denotes the scalar product
of two vectors and 1 is a vector with all components equal to one. To solve
the inverse problem we must find the values of m that maximize the pattern
correlation r(m), as this implies maximum alignment of the vectors d′ and g

′ .
The magnitudes of the vectors do not influence the results and this makes
equation (1) a particularly convenient measure of agreement between model
and observations when the spatial patterns are in arbitrary units. This is
frequently the case because it is still difficult to estimate ash concentrations,
as noted in Section 1.

The pattern correlation in equation (1) is maximised by systematically search-
ing the parameter space formed by all possible vectorsm. This is accomplished
by specifying upper and lower limits for each component of m and subdividing
the resulting range into N equally spaced values to form Nn grid points, where
n is the number of components of m. The number of components n cannot
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be too large due to the exponential growth of the number of grid points in
this method. Dispersion model simulations with parameter values defined
at each of these grid points are run, and resulting column loading values
are compared with satellite-derived ash column loading values by using the
pattern correlation measure in equation (1).

We investigate two different inversion schemes, namely deterministic and
probabilistic. In the deterministic scheme, which is more suited for situations
in which there is high confidence in the satellite retrievals and dispersion
model performance, the vector m yielding the highest pattern correlation is
chosen as the solution of the inverse problem. In the probabilistic scheme,
parameters satisfying

r(m)

R
> α , (2)

are chosen to form the solution ensemble. Here r is the pattern correlation
value at some parameter grid point, m, and R is the maximum pattern
correlation value. If the cut-off parameter α is chosen to be one, then
the probabilistic scheme reduces to the deterministic scheme. However,
generally we shall choose α to be about 0.95, a choice we justify empirically in
subsequent sections. Because of the inherent uncertainties in satellite retrieved
ash mass loading values, we only compare the simulated and observed (satellite
retrieved) ash distribution fields in binary form; that is, we only consider
whether a given location contains ash or not, and not the absolute ash mass
loading value. Ash probability distributions are calculated by taking the
average value of the binary valued (0 or 1) ash loading field at every (longitude,
latitude) grid point in the solution ensemble.

3 February 2014 Kelut eruption

Mount Kelut located in Java, Indonesia (7.93S 112.31E, summit elevation
1731m) erupted for several hours starting at around 1600 utc on February 13,
2014 . From the standpoint of our research, this eruption is important due
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to the abundance of satellite data associated with the eruption. Here we
make use of two of such data sets, namely those from the mtsat-2 [8] and
calipso [9] satellite instruments. mtsat-2 is a geostationary satellite which
provides continuous coverage of a fixed area on the globe; this area includes
the region of interest, namely the Indonesian region. mtsat-2 data is available
operationally once every hour. The first mtsat-2 image after the eruption
was available at 1630 utc, about half an hour after the start of the eruption.

Figure 1 shows the 1830 utc infrared (11µm) brightness temperature (bt)
image. The temperatures associated with the cold anomaly are below 195K
which correspond to altitudes of around 16 km using vertical profile informa-
tion available at around that time from the nearby Surabaya station. This
altitude is the approximate altitude of the tropopause which separates the tro-
posphere from the stratosphere above; this effectively acts as a lid inhibiting
upward motion of tropospheric particles such as volcanic ash. However, also
noticeable in this image is a warmer region with temperatures above 200K
embedded within the cold anomaly. This is evidence of stratospheric intrusion
of ash due to the strength of this particular eruption. This is confirmed
by Figure 2, obtained from the calipso satellite-borne lidar instrument at
around 1830 utc.

calipso provides information about the vertical structure of the ash, and
Figure 2 shows that the ash extends to over 25 km, well into the stratosphere.
calipso travels in a polar orbit and superposed on Figure 1 is its orbital
track in the vicinity of the volcano. Figure 2 shows that the broader region
of ash extending up to about 19 km corresponds to the colder temperatures
(white areas) in Figure 1. This broad region is generally referred to as an
umbrella cloud, due to shape of the eruption column which tends to be narrow
at lower altitudes and broad at higher (around tropopause) altitudes. The
calipso image clearly indicates that the umbrella cloud extends above the
tropopause (in addition to the aforementioned narrow stratospheric intrusion
region). The bt based height estimates assume that the ash is a perfect black
body, which is a reasonable assumption for the optically dense umbrella cloud
region near the tropopause. This assumption is less likely to be valid for the
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Figure 1: mtsat-2 infrared brightness temperature (K) with ash identified
by cold anomaly (white area).

ash in the stratosphere and therefore the bt based height estimates are less
likely to be accurate there.

As described in Section 2, for the purposes of inverse modelling we are only
interested in demarcating areas that contain ash from areas not containing ash
and therefore we introduce a cut-off temperature chosen from an examination
of the imagery (the final results were found to be relatively insensitive to
the precise value of this cut-off temperature) in the vicinity of the volcano.
This cut-off was used to create a binary representation of the ash cloud and
used as the observational data in the inverse model. A similar procedure
can be applied to the bt images at other times. As the plume moves away
from the volcano it generally becomes more difficult to demarcate it from
the surrounding meteorological clouds using the bt image and the associated
retrieval is therefore more prone to error. Additionally, the bt images do not
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Figure 2: calipso image with vertical structure of ash shown in yellow. The
span of the base of the yellow region corresponds to the span of the orbital
track shown in Figure 1.
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capture the ash at lower altitudes due to the presence of water/ice clouds. In
such situations ash is detected by other methods such the brightness difference
temperature method [10] and the algorithm of Pavolonis [11]. Ash was only
detected by these methods from about 1930 utc. Moreover, the very optically
thick part of the cloud was not detected by these methods until some time
later. However, unlike in the bt images, ash was identified at lower altitudes
and it is therefore useful to combine information from these two detections.
This was done from 1930 utc onwards.

4 Inverse modelling results

Here we evaluate to what extent the algorithm described in Section 2 can be
used to infer the maximum vertical extent of the ash column by using mtsat-2
satellite data only. Ash profile information from calipso will only be used
to verify the estimates obtained from the inverse model because calipso,
unlike mtsat-2, does not provide continuous real-time coverage over a fixed
area of the globe and cannot therefore be used on a systematic basis for
operational data assimilation. hysplit is used to model the transport of ash.
The model employs a cylindrical ash source from which particles are released.
The base of the cylinder is fixed at the volcano summit altitude of 1.7 km
while the top (h) is treated as a variable to be optimised with respect to ash
observations at hourly intervals between 1630 and 2130 utc. The diameter of
the source is chosen to be 100 km, taking into account the size of the umbrella
cloud seen in imagery at 1630 utc. The particle release time is specified
to be 1600 utc and the eruption duration to be 4 hours. The source top
altitude is initially specified to be somewhere in the range 10–30 km.

The results are summarised in Table 1. From Table 1, the optimal maximum
altitude of the ash column is at or above 20 km, using observations within the
first six hours from the start of the eruption. The range of values satisfying
equation (2) is also shown in Table 1. We see that the inferred possible values
are all above 17 km to a maximum of 29 km, with the exception of 1630 utc
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Table 1: Top altitude of ash column (h) as inferred by inverse modelling at
different time steps. The maximal and minimal values refer to the range of
possible values obtained from the inversion.

Time utc optimal h (km) r minimal h (km) maximal h (km)
1630 24.0 0.77 14.0 29.0
1730 23.0 0.73 17.0 29.0
1830 22.0 0.71 18.0 29.0
1930 20.0 0.77 19.0 29.0
2030 21.0 0.78 18.0 29.0
2130 23.0 0.77 18.0 29.0

which yields possible altitudes above 14 km. These ranges are consistent with
the observed maximal extent of the ash column shown in Figure 2. Optimal
altitude values at each observation time are in the range 20–24 km with the
observed value of around 25 km being just outside this range.

Figure 3 shows the variation of the pattern correlation r, with h at 1830 utc.
We understand from this figure why the inferred range of possible values of h
is quite wide (18–29 km). The reason is that the pattern correlation curve
becomes flat at about h = 18 km or so. A similar behaviour is observed
at other observation times, with the possible exception of 1630 utc (not
shown) in which the flat region appears at lower altitudes. The explanation
for this flatness is that the wind patterns are such that in the simulation
it becomes difficult to discriminate between transport of ash at altitudes
higher than 18 km. The red line in Figure 3 shows the discrete probability
distribution function calculated from equation (2). Simulations employing
values of h satisfying this relationship are given weights of one within the
solution ensemble while those with values of h not satisfying this relationship
are given weights of zero. With the chosen value of the cut-off parameter, α =
0.95 , this weighting has the effect of only retaining simulations with values
of h within the flat part of the pattern correlation curve.

The solution ensemble is integrated forward in time to yield probabilistic
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Figure 3: Variation of pattern correlation (scaled to a maximum value of one)
with ash source top altitude (black) and corresponding discrete probability
distribution function (red) obtained using observations at 1830 utc.

forecasts of ash. Figure 4 shows the ash forecasts at 14/0630 utc (i.e.,
12 hours later) based on both the deterministic version of the model (using
the optimal value h = 22 km) and the probabilistic version (using the range
18 km 6 h 6 29 km). It is fortunate that around this time another calipso
overpass was available which showed ash at around 17–20 km. The calipso
track is shown in both plots in Figure 4. Both deterministic and probabilistic
forecasts clearly predict ash at the location of the calipso track. Addition-
ally, regions identified as containing ash by the mtsat-2 satellite using the
algorithm of Pavolonis [11] are shown in Figure 4. These are also in good
agreement with the forecasts, although clearly there are regions predicted
to have ash by the dispersion model but which are not predicted by the
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Figure 4: Ash bearing locations at 14/0630 utc obtained from analysis at
13/1830 utc for (top) the deterministic forcast (shown in red) and (bottom)
the probabilistic forecast (probabilities shown in colour bar). The calipso
(straight dotted line) and mtsat-2 (dotted curve) satellite detections of ash
at around this time are also shown.
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Pavolonis algorithm. The main difference between the forecasts is that the
probabilistic forecast predicts two main separate westward branches with
high probability, and lower probability in the areas in between, whereas the
deterministic forecast predicts ash everywhere.

5 Conclusion

We presented a new method for inferring optimal dispersion model parameters
from observations of volcanic ash obtained from satellite data. The method
uses pattern correlations to compare a suite of simulations with different
model parameters against observations. In the deterministic variant the
model parameters that yield the maximum pattern correlation are chosen as
the solution and used to issue forecasts of ash transport. In the probabilistic
variant the model parameters yielding pattern correlations greater than a
specified cut-off parameter are chosen to form the ensemble of the solutions
from which probabilistic forecasts are issued. The latter approach takes into
account that both the model and the observations contain errors that might
mask the true solution. Additionally, the wind structure might be such that
the true solution is difficult to untangle from other candidate solutions.

We tested this method using the February 2014 Kelut eruption in Java,
Indonesia, mainly because of the availability of corroborating lidar (calipso)
observations associated with this event. We focussed on a particular problem,
namely that of determining the maximum altitude of the ash column at
the location of the volcano, which is a one parameter problem. This height
was determined by calipso to be about 25 km, consistent with an analysis
of infrared bt imagery. Depending on the observation time, the inverse
method yielded estimates of 20–24 km in the deterministic scheme while,
in the probabilistic scheme, values between 17–29 km were obtained from
1730 utc onwards. This method may therefore be used to obtain height
estimates in situations where the commonly used bt method does not work
as well, such as for optically thin clouds. Additionally, the method can also



References C207

be used to infer other model parameters not easily obtained by other means
such as the horizontal span of the umbrella cloud and the mean particle size
of ash particles in the cloud. These applications will be considered in future
publications.
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