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Abstract

This paper focusses on high order compact schemes for direct nu-
merical simulation (dns) and large eddy simulation (les) for flow
separation, transition, tip vortex, and flow control. We discuss the
fundamental issues of high quality grid generation, high order schemes
for curvilinear coordinates, the cfl condition for complex geometry,
and high-order weighted compact schemes for shock capturing and
shock-vortex interaction. The computation examples include dns for
K-type and H-type transition, dns for flow separation and transition
around an airfoil with attack angle, control of flow separation by using
pulsed jets, and les simulation for a tip vortex behind the juncture
of a wing and flat plate. Computations also show the almost linear
growth in efficiency obtained using multiple processors.
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1 Introduction

Many important practical flow problems are time dependent with a wide
range of length scales. Examples include flow transition, separation, turbu-
lence, shock turbulence interaction, wakes, and acoustic waves. These can-
not be predicted and understood by traditional Reynolds Averaged Navier–
Stokes (rans) methods, but are amenable to direct numerical simulation
(dns) or, at least, large eddy simulation (les). Due to the incredible pace at
which computer speed is increasing and computer prices are falling, dns and
les can nowadays be performed on a cheap pc-cluster which most companies
or universities can afford, enabling more and more realistic flow problems to
be seriously studied by dns or les. Several millions of grids cells with tens
of thousands of time steps are now fairly normal for dns or les calcula-
tions. Meanwhile, advanced computational methodology is urgently sought
by researchers to increase the computational efficiency and accuracy. Such
methodology includes, in particular, high order schemes, high order filters,
high quality grid generation, high order schemes for shock turbulence inter-
action, fast flow solvers, and parallel computation.

This paper summarizes efforts in utilizing dns and les for some of the
most challenging flow problems investigated at the Center for Numerical
Simulation and Modeling at the University of Texas at Arlington. The re-



1 Introduction C1374

searchers include Dr L. Jiang, Dr H. Shan, Mr S. Deng and Mr J. Cai. We
focus on the application of high order schemes for a general geometry.

The paper is arranged as follows: Section 2 mainly discusses numerical
approaches for dns/les and Sections 3, 4 and 5 provide several dns/les
computational examples which are challenging in modern fluid dynamics.
Section 6 provides some conclusions.

2 Numerical approaches for high order DNS

in curvilinear coordinates

2.1 Governing equations

The three dimensional compressible Navier–Stokes equations in generalized
curvilinear coordinates (ξ, η, ζ) may be written in conservative form as

1

J

∂Q

∂t
+

∂(E − Ev)

∂ξ
+

∂(F − Fv)

∂η
+

∂(G−Gv)

∂ζ
= 0 . (1)

Here the coordinate transformation between the curvilinear (ξ, η, ζ) and
Cartesian (x, y, z) frames are defined by

ξ = ξ(x, y, z) , η = η(x, y, z) , ζ = ζ(x, y, z) , (2)

and J = ∂(ξ,η,ζ)
∂(x,y,z)

is the Jacobian of the transformation. The vector of con-

served quantities Q, the inviscid flux vector (E, F, G), and the viscous flux
vector (Ev, Fv, Gv) are

Q =


ρ
ρu
ρv
ρw
Et

 , E =
1

J


ρU

ρUu + pξx

ρUv + pξy

ρUw + pξz

U(Et + p)

 , F =
1

J


ρV

ρV u + pηx

ρV v + pηy

ρV w + pηz

V (Et + p)

 ,
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G =
1

J


ρW

ρWu + pζx

ρWv + pζy

ρWw + pζz

W (Et + p)

 , Ev =
1

J


0

τxxξx + τyxξy + τzxξz

τxyξx + τyyξy + τzyξz

τxzξx + τyzξy + τzzξz

Qxξx + Qyξy + Qzξz

 ,

Fv =
1

J


0

τxxηx + τyxηy + τzxηz

τxyηx + τyyηy + τzyηz

τxzηx + τyzηy + τzzηz

Qxηx + Qyηy + Qzηz

 , Gv =
1

J


0

τxxζx + τyxζy + τzxζz

τxyζx + τyyζy + τzyζz

τxzζx + τyzζy + τzzζz

Qxζx + Qyζy + Qzζz

 ,

where u, v and w are the velocity components in the x, y and z directions
respectively, and ξx, ξy, ξz, ηx, ηy, ηz, ζx, ζy, ζz are the coordinate transfor-
mation metrics. The contra-variant velocity components are

U = uξx + vξy + wξz , V = uηx + vηy + wηz , W = uζx + vζy + wζz , (3)

whereas Qx, Qy and Qz in the energy equation are

Qx = −qx + uτxx + vτxy + wτxz ,
Qy = −qy + uτxy + vτyy + wτyz ,
Qz = −qz + uτxz + vτyz + wτzz ,

(4)

and Et is the total energy. The components of the viscous stress tensor and
heat flux are denoted by τxx, τyy, τzz, τxy, τxz, τyz, and qx, qy, qz respectively.

To obtain the dimensionless form, the reference values for length, density,
velocity, temperature, pressure and time are L, ρr, Ur, Tr, ρrU

2
r and L/Ur

respectively. Here, the free stream parameters are chosen as reference values
and the chord length of the airfoil is used as the reference length. The dimen-
sionless parameters that arise are the Mach number Mr, Reynolds number Re,
Prandtl number Pr, and the ratio of the specific heats γ:

Mr =
Ur√
γRT

, Re =
ρrUrL

µr

, Pr =
Cpµr

kr

, γ =
Cp

Cv

, (5)
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where R is the ideal gas constant, Cp and Cv are specific heats at constant
pressure and constant volume respectively. Throughout this work, Pr = 0.7
and γ = 1.4 . Viscosity is determined according to the Sutherland’s law,
which in dimensionless form is

µ =
T 3/2(1 + S)

T + S
, S =

110.3K

Tr

, (6)

where T is the temperature in degrees K.

The governing system is closed by the equation of state:

γM2
r p = ρT , Et =

p

γ − 1
+

1

2
ρ(u2 + v2 + w2) . (7)

The components of the viscous stress tensor and heat flux in non-dimensional
form are

τij =
µ

Re

[(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
δij

∂uk

∂xk

]
, qi = − µ

(γ − 1)M2
r Re Pr

∂T

∂xi

. (8)

2.2 Grids: smoothness, orthogonality, high order
Jacobian, conservation for curvilinear coordinates

The dns and les computation requires a high order accuracy to capture
high frequency waves and small magnitude disturbances. It is a challenge
to achieve high order accuracy with a body-fitted grid. Let us consider the
discretization for the first order derivative of a general function ϕ(x, y, z) :

∂ϕ

∂x
=

∂ϕ

∂ξ

∂ξ

∂x
+

∂ϕ

∂η

∂η

∂x
+

∂ϕ

∂ζ

∂ζ

∂x

=

(
δϕ

δξ
+ τ̃ξ

) (
δξ

δx
+ τ̃1

)
+

(
δϕ

δη
+ τ̃η

) (
δη

δx
+ τ̃2

)
+

(
δϕ

δζ
+ τ̃ζ

) (
δζ

δx
+ τ̃3

)
. (9)
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Figure 1: (a) Computational space C, (b) Parameter space P , and (c) Phys-
ical domain D.

Here δ·/δξ denotes a finite difference approximation of ∂·/∂ξ, and τ̃ the trun-
cation error. In order to achieve sixth order accuracy of the discretization, we
require that the grid functions ξ, η and ζ have at least seventh order deriva-
tives and the discretization of Jacobian has at least sixth order accuracy. For
3D problems, additional conservation conditions must be satisfied [20]:

I1 =
(
ξ̂x

)
ξ
+

(
η̂x

)
η
+

(
ζ̂x

)
ζ

= 0 ,

I2 =
(
ξ̂y

)
ξ
+

(
η̂y

)
η
+

(
ζ̂y

)
ζ

= 0 ,

I3 =
(
ξ̂z

)
ξ
+

(
η̂z

)
η
+

(
ζ̂z

)
ζ

= 0 ,

(10)

where ξ̂x = J−1ξx and J = ∂(ξ,η,ζ)
∂(x,y,z)

.

We must check these conditions after we generate the 3D grids. In order
to avoid or reduce the error of discretization of the cross derivatives, an
orthogonal grid near the wall surface where the velocity gradient is large is
preferred.

An elliptic grid generation method first proposed by Spekreijse [16] gen-
erates the grids; it is based on a composite mapping of a nonlinear algebraic
transformation and an elliptic transformation. For simplicity, consider 2D
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grid generation to illustrate the method. The algebraic grid transformation
maps the computational space C onto a parameter space P , and the elliptic
transformation maps the parameter space on to the physical domain D. Fig-
ure 1 illustrates the computational space, parameter space, and the physical
domain.

The parameter space P is defined as a unit space in a two dimensional
space with Cartesian coordinate (ŝ, t̂), and ŝ ∈ [0, 1] , t̂ ∈ [0, 1] . The bound-
ary values of ŝ and t̂ are determined by the grid point distribution in the
physical domain:

• ŝ = 0 at edge E1 and ŝ = 1 at edge E2;

• ŝ is the normalized arclength along edges E3 and E4;

• t̂ = 0 at edge E3 and t̂ = 1 at edge E4;

• t̂ is the normalized arclength along edges E1 and E2.

An algebraic transformation ŝ : C → P is defined to map the computation
space C onto the parameter space P :

ŝ = ŝE3(ξ)(1− t̂) + ŝE4(ξ)t̂ ,
t̂ = t̂E1(η)(1− ŝ) + t̂E2(η)ŝ ,

(11)

where ŝE3 is the normalized arc length along edge E3, etc.

The elliptic transformation x : P → D is defined to map the parameter
space P onto the physical domain D. In the physical domain, the curvilinear
coordinate system satisfies a system of Laplace equations

∆r = 0 , (12)

where r = (x, y)T . Then the Laplace system, Equation (12), is transformed
to the computational space C giving

g11rξξ + 2g12rξη + g22rηη + ∆ξrξ + ∆ηrη = 0 , (13)
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where [
∆ξ
∆η

]
= g11P11 + 2g12P12 + g22P22 , (14)

g11 = g22/J
2 = (rη, rη)/J

2 , g12 = −g12/J
2 = −(rξ, rη)/J

2 ,

g22 = g11/J
2 = (rξ, rξ)/J

2 , P11 =

[
P

(1)
11

P 2
11

]
= −T−1

[
ŝξξ

t̂ξξ

]
, (15)

P12 =

[
P

(1)
12

P 2
12

]
= −T−1

[
ŝξη

t̂ξη

]
, P22 =

[
P

(1)
22

P 2
22

]
= −T−1

[
ŝηη

t̂ηη

]
,

and the matrix

Γ =

[
ŝξ ŝη

t̂ξ t̂η

]
. (16)

Note that r and P are vectors and g is a matrix. The details can be found
in [16].

2.3 High-order compact schemes

Traditional finite difference schemes are based on Lagrange interpolation and
require one grid point more than the order of the finite difference scheme;
for example, a second order scheme needs to use three grid points. A Pade-
type compact scheme could be constructed based on Hermite interpolation
where both function and derivatives at grid points are involved, for example,
a fourth order finite difference scheme can be constructed if both function
and first order derivative are used at three grid points. For a function f we
may write a compact scheme using five points [14]:

β−f ′j−2 + α−f ′j−1 + f ′j + α+f ′j+1 + β+f ′j+2

= (b−fj−2 + a−fj−1 + cfj + a+fj+1 + b+fj+2)/∆ξ. (17)

We can get eighth order of accuracy by using the above formula. To obtain a
symmetric and tri-diagonal system, we may set β− = β+ = 0 , α− = α+ = 1

3
,
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S0 S2

Figure 2: Candidate stencils for an interior point j.

a+ = −a− = 7
9
, b+ = −b− = 1

36
, c = 0 , giving a sixth order scheme that

uses three derivatives and five grid points.

2.4 Weighted compact scheme

If the compact scheme is used to differentiate a discontinuous or shock
function, the computed derivative has grid to grid oscillation. In previous
work [9], we proposed a new class of finite difference scheme—the weighted
compact scheme (wcs). This scheme not only achieves high order accuracy
and high resolution, but also accurately captures shock waves without oscil-
lation.

2.4.1 Basic formulations of weighted compact scheme

For a given point j, three candidate stencils containing this point are (see
Figure 2)

S0 = (xj−2, xj−1, xj) , S1 = (xj−1, xj, xj+1) and S2 = (xj, xj+1, xj+2) .

The schemes for the three candidate stencils are obtained by applying Equa-
tion (17) to each of these stencils:

S0 : F0 : 2f ′j−1 + f ′j =
1

h

(
−1

2
fj−2 − 2fj−1 +

5

2
fj

)
,
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S1 : F1 :
1

4
f ′j−1 + f ′j +

1

4
f ′j+1 =

1

h

(
−3

4
fj−1 +

3

4
fj+1

)
, (18)

S2 : F2 : 2f ′j+1 + f ′j =
1

h

(
−5

2
fj + 2fj+1 +

1

2
fj+2

)
.

The schemes corresponding to stencils S0 and S2 are third order, one sided,
finite difference schemes; and the scheme corresponding to S1 is a fourth
order, centered scheme. These three equations are denoted by F0, F1 and F2.
A new scheme is obtained using the weighted average

F = C0F0 + C1F1 + C2F2 , (19)

where C0, C1 and C2 are weights that satisfy C0 + C1 + C2 = 1 . When the
weights are chosen as

C0 = C2 =
1

18
, C1 =

8

9
, (20)

the resulting scheme is the sixth order centered compact scheme

1

3
f ′j−1 + f ′j +

1

3
f ′j+1 =

1

h

(
− 1

36
fj−2 −

7

9
fj−1 +

7

9
fj+1 +

1

36
fj+2

)
. (21)

The procedure described above shows that a sixth order centered compact
scheme can be represented by a combination of three lower order schemes.
In order to achieve the non-oscillatory property, the weno weights [7] are
introduced to determine each stencil. The weights are determined according
to the smoothness of the function on each stencil. Following the weno
method, the new weights are

ωk =
γk∑2
i=0 γi

and γk =
Ck

(ε + ISk)σ
, (22)

where ε is a small positive number used to prevent the denominator becoming
zero, σ is an important parameter to control the weighting and ISk are
smoothness measurements:

IS0 =
13

12
(fj−2 − 2fj−1 + fj)

2 +
1

4
(fj−2 − 4fj−1 + 3fj)

2 ,
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IS1 =
13

12
(fj−1 − 2fj + fj+1)

2 +
1

4
(fj−1 − fj+1)

2 , (23)

IS2 =
13

12
(fj − 2fj+1 + fj+2)

2 +
1

4
(fj − 4fj+1 + 3fj+2)

2 .

Regard the two terms on the right hand side as the measurements of the
curvature and the slope respectively at a certain point.

The new scheme is

F = ω0F0 + ω1F1 + ω2F2 . (24)

The leading error of F is a combination of the leading errors of the original
schemes, and is(

1

12
ω0 −

1

12
ω2

)
f (4)h3 +

(
− 1

15
ω0 +

1

120
ω1 −

1

15
ω2

)
f (5)h4 . (25)

2.4.2 Conservation and reconstruction function

The conservative property of the scheme is very important in shock wave
capturing. Conservation can be obtained when the weighted compact scheme
is applied together with the eno [5] reconstruction method [9].

2.5 Linear stability (CFL conditions) for stretched
grids

2.5.1 CFL condition

Consider the 1D advection equation

∂u

∂t
+ a

∂u

∂x
= 0 (−∞ < x < +∞) such that u(0, x) = sin(kx) , (26)
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where a and k are constants. The Euler forward and up-winding scheme
gives, for a > 0 , the finite difference scheme

wn+1
i = wn

i + a
∆t

∆x
(wn

i − wn
i−1) , w0

i = sin (kxi) . (27)

Here wn
i is an approximation of the exact solution at x = xi and t = tn .

This difference equation is stable if
∣∣a ∆t

∆x

∣∣ ≤ 1 which means the cfl number
must be less than or equal to one. The exact solution is u = sin k(x− at) .

2.5.2 CFL condition for stretched and curved grids

For a 3D inviscid compressible flow, the governing Euler equation in general
curvilinear coordinates is

∂Q

∂τ
+

∂F

∂ξ
+

∂G

∂η
+

∂H

∂ζ
= 0 , (28)

where ξ = ξ(x, y, z) , η = η(x, y, z) , ζ = ζ(x, y, z) , τ = t and
Q = J [ρ, ρu, ρv, ρw, e]T . Here J is the Jacobian, ρ is the density, u, v and w
are velocity components in x, y and z directions respectively, and e is the
internal energy. For a 1D hyperbolic system in the ξ direction, equation (28)
diagonalizes to

∂q

∂τ
+ Λ

∂q

∂ξ
= S , (29)

where Λ is a diagonal matrix with the five eigenvalues

λ1
ξ = λ2

ξ = λ3
ξ = ξxu + ξyv + ξzw = U ,

λ4
ξ = U + c(ξ2

x + ξ2
y + ξ2

z )
1
2 , (30)

λ5
ξ = U − c(ξ2

x + ξ2
y + ξ2

z )
1
2 ,

where U is the contra-variant velocity component and c =
√

γRTr is the
speed of sound. The non-dimensional eigenvalues are

λ̄1
ξ = λ̄2

ξ = λ̄3
ξ = Ū ,
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λ̄4
ξ = Ū +

1

Mr

(ξ2
x + ξ2

y + ξ2
z )

1
2 , (31)

λ̄5
ξ = Ū − 1

Mr

(ξ2
x + ξ2

y + ξ2
z )

1
2 ,

where U = Ū/Ur and Mr = Ur/c is the Mach number. The cfl condition
requires

∣∣λk
ξ∆t/∆ξ

∣∣ ≤ 1 . If Mr is too small (low speed flow), λ4
ξ or λ5

ξ will
be extremely large even when U is near zero close to the wall, in which case
∆t must be extremely small. In the formulas above, ξx ≈ ∆ξ/∆x repre-
sents the stretching, ξy ≈ ∆ξ/∆y and ξz ≈ ∆ξ/∆z represent the curvature.
Note that ∆ξ is usually constant (∆ξ = domain length/grid number) , and
λ4

ξ or λ5
ξ will be extremely large if ∆x, ∆y, ∆z are too small or the stretch-

ing or distortion is too big. It is always recommended to check the size of
max [ξx, ξy, ξz]/min [ξx, ξy, ξz] and make sure that it is not too large.

Using implicit marching is a nice alternative, but we should be careful to
talk about the accuracy of the implicit scheme when the nonlinear system is
not fully converged at each time step.

2.6 Non-linearity and high-order filter

2.6.1 Non-linearity and high-frequency waves

Now consider the non-linear advection equation

∂u

∂t
+ u

∂u

∂x
= 0 (−∞ < x < +∞) such that u(0, x) = sin (kx) . (32)

The Euler forward scheme would give

w1
i = w1

i + ∆tw1
i

∂w

∂x

∣∣∣1
i

= sin (kxi) + ∆t sin (kxi) cos (kxi)

= sin (kxi) + ∆t sin (2kxi)/2 , (33)

w0
i = sin (kxi) .
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The initial solution originally does not include the wave number 2k. However,
after the first step, the solution has both wave number k and wave number 2k.
As time increases, the maximum wave number will become larger and larger
due to progressive doubling until it cannot be resolved by our computational
grid. Consequently, we will have problems with the grid resolution when we
solve the non-linear advection equation.

2.6.2 Low passing filter

This problem with the grid resolution can be solved using a filter which
significantly reduces the high-frequency waves. Recently the following high
order implicit filter has been developed and widely applied [14, 19]:

αϕ̂i−1 + ϕ̂i + αϕ̂i+1 =
N∑

n=0

an

2
(ϕi+n + ϕi−n) , (34)

where 2N is the number of neighbouring points, −0.5 < α < 0.5 , ϕ̂i is
filtered, ϕi is the original value and the an are coefficients for neighboring
points. Note that les uses a filter for the governing equation, but the filter
discussed here is to filter the solution itself. In any case, the filtered part of
the solution or equation should be tracked by using a sub-scale model.

2.6.3 Filter and artificial viscosity

The artificial viscosity concept is to add additional dissipation to the Navier–
Stokes equation to reduce the effective Reynolds number. For example, the
solution of a second order finite difference approximation of the incompress-
ible Navier–Stokes equations will satisfy

∂ui

∂t
+

∂uiuj

∂xj

−
(

1

Re
+ dh2

)
∂2ui

∂x2
j

+
∂p

∂xi

= 0 , (35)



2 Numerical approaches for high order DNS in curvilinear coordinates C1386

where h is the mesh size and d is a constant which is directly related to the
finite difference scheme. The filter discussed above only allows low frequency
waves to pass, damping the high-frequency waves. There are no governing
equations involved in the filter. However, if we substitute the original ϕ
by the filtered ϕ̂ in the governing equations, we find we really add some
dissipation. In general,

ui = ûi + O(hk) . (36)

Replace u by the above formula in the governing Navier–Stokes equation, we
change the governing equation and possibly add some dissipation. However,
if the filter has higher order, we do not change the governing equation in the
numerical sense.

2.7 Fully implicit scheme and iteration (flow solver)

In Equation (1), a second order backward scheme is used for time derivative,
and the fully implicit form of the discretized equation is

3Qn+1 − 4Qn + Qn−1

2J∆t
+

∂ (En+1 − En+1
v )

∂ξ

+
∂ (F n+1 − F n+1

v )

∂η
+

∂ (Gn+1 −Gn+1
v )

∂ζ
= 0 . (37)

The value Qn+1 is estimated iteratively as Qn+1 = Qp + δQp with Q0 = Qn .
The flux vectors are linearized as En+1 ≈ EP +AP δQP , F n+1 ≈ F P +BP δQP

and Gn+1 ≈ GP + CP δQP , so that equation (37) becomes[
3

2
I + ∆tJ(DξA + DηB + DζC)

]
δQP = Res, (38)

where the residual

Res = −
(

3

2
Qp − 2Qn +

1

2
Qn−1

)
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−∆tJ [Dξ(E − Ev) + Dη(F − Fv) + Dζ(G−Gv)]
p . (39)

Here Dξ, Dη and Dζ represent partial differential operators, and

A =
∂E

∂Q
, B =

∂F

∂Q
, G =

∂G

∂Q
(40)

are the Jacobian matrices of flux vectors. The right hand side of Equa-
tion (38) is discretized using a sixth order, compact scheme for the spatial
derivatives, and the equation is solved by lu-sgs method [21]. As δQp is
driven to zero, Qp approaches Qn+1.

An eighth order compact filter is employed at each time step to reduce
numerical oscillation.

2.8 Non reflecting boundary conditions

The concept of non-reflecting boundary conditions was proposed by Thomp-
son [17, 18] who introduced the idea of specifying the boundary conditions
according to the inward and outward propagating waves. Usually the out-
going waves have their behaviour defined entirely by the solution at and
within the boundary, and no boundary conditions are needed. Therefore,
the number of boundary conditions equals the number of incoming waves.
Poinsot and Lele [15] extended Thompson’s method to specify the boundary
conditions for the Navier–Stokes equations, where the effect of viscosity has
been taken into account. However, only boundary conditions in Cartesian
coordinates are given. Based on the previous work by the above authors, we
developed non-reflecting boundary conditions for compressible flow in curvi-
linear coordinates [10]. Based on a 1D characteristic analysis, the hyperbolic
terms in ξ direction is modified to

∂ρ

∂t
+ d1 + V

∂ρ

∂η
+ ρ(ηx

∂u

∂η
+ ηy

∂v

∂η
+ ηz

∂w

∂η
) + W

∂ρ

∂ζ
,
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+ ρ(ζx
∂u

∂ζ
+ ζy

∂v

∂ζ
+ ζz

∂w

∂ζ
) + vis1 = 0 ,

∂u

∂t
+ d2 + V

∂u

∂η
+

1

ρ
ηx

∂p

∂η
+ W

∂u

∂ζ
+

1

ρ
ζx

∂p

∂ζ
+ vis2 = 0 ,

∂v

∂t
+ d3 + V

∂v

∂η
+

1

ρ
ηy

∂p

∂η
+ W

∂v

∂ζ
+

1

ρ
ζy

∂p

∂ζ
+ vis3 = 0 , (41)

∂w

∂t
+ d4 + V

∂w

∂η
+

1

ρ
ηz

∂p

∂η
+ W

∂w

∂ζ
+

1

ρ
ζz

∂p

∂ζ
+ vis4 = 0 ,

∂p

∂t
+ d5 + V

∂p

∂η
+ γp(ηx

∂u

∂η
+ ηy

∂v

∂η
+ ηz

∂w

∂η
) + W

∂ρ

∂ζ

+ γp(ζx
∂u

∂ζ
+ ζy

∂v

∂ζ
+ ζz

∂w

∂ζ
) + vis5 = 0 ,

where vis1–vis5 represent viscous terms in curvilinear coordinates, and
d1

d2

d3

d4

d5

 =


1
c2

[
1
2
(L1 + L5) + L2

]
ξx

2βρc
(L5 − L1)− 1

β2 (ξyL3 + ξzL4)
ξy

2βρc
(L5 − L1) + 1

β2ξx
[(ξ2

x + ξ2
z )L3 − ξzξyL4]

ξz

2βρc
(L5 − L1)− 1

β2ξx

[
ξyξzL3 − (ξ2

x + ξ2
y)L4

]
1
2
(L1 + L5)

 . (42)

In Equation (42), c is the sound wave speed and β =
√

ξ2
x + ξ2

y + ξ2
z . The

Li represent the amplitude variations of the characteristic waves correspond-
ing to the characteristic velocities, which are λ1 = U−Cξ , λ2 = λ3 = λ4 = U
and λ5 = U + Cξ , where Cξ = cβ . The amplitude variations are

L1 = (U − Cξ)

[
−ρc

β
(ξx

∂u

∂ξ
+ ξy

∂v

∂ξ
+ ξz

∂w

∂ξ
) +

∂p

∂ξ

]
,

L2 = U

(
c2∂ρ

∂ξ
− ∂p

∂ξ

)
,

L3 = U

(
−ξy

∂u

∂ξ
+ ξx

∂v

∂ξ

)
, (43)
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(a) (b)

Figure 3: Linear speed-up of mpi computation: (a) Wall-clock time versus
number of processors; (b) speed-up versus number of processors.

L4 = U

(
−ξz

∂u

∂ξ
+ ξx

∂w

∂ξ

)
,

L5 = (U + Cξ)

[
ρc

β
(ξx

∂u

∂ξ
+ ξy

∂v

∂ξ
+ ξz

∂w

∂ξ
) +

∂p

∂ξ

]
.

These equations will be used for neighbours of boundary points in the ξ di-
rection. The equations for η and ζ directions are similar. In this way, the
non-physical wave reflection is effectively eliminated.

2.9 MPI parallel computation

We developed an mpi parallel code based on our serial code. The performance
of the parallel program is examined for our compressible dns code on an sgi
Origin 2000 computer and the results show very good computing efficiency
of parallel machines with mpi (see Figure 3).
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3 DNS for flow transition

3.1 Problem definitions and boundary conditions

Nonlinear stability, starting with the formation of three dimensional struc-
tures, is also referred to as secondary instability. The aligned three dimen-
sional structure associated with the peak valley splitting of secondary insta-
bility was first measured in detail by Klebanov, Tidstrom and Sargent [12].
This type of secondary instability is now referred to as the fundamental or K-
type after Klebanov. Later, in boundary layer experiments, Kachanov [11]
found another type of secondary instability characterized by subharmonic
signals and that reveals staggered patterns of three dimensional structure.
These experiments showed the staggered structure of unstable vortices, which
is referred to as H-type after Herbert [6].

The computation domain is displayed in Figure 4. The length of com-
putational domain along the streamwise direction is about 32 primary ts
wavelengths which amounts to around 800δin, where δin is defined as the dis-
placement thickness of inflow boundary layer. Here, the ts wave refers to
Tollmien–Schlichting wave which is the most unstable mode for flow instabil-
ity on a flat plate. The width along the spanwise direction is about 30δin, and
height at the inflow boundary is 40δin. The Reynolds number at the inflow is
1000 based on the displacement thickness and the free-stream velocity. The
Mach number is set to 0.5 .

The inflow boundary conditions are in the form

q = qlam + A2dq
′
2d + A3dq

′
3d + Arq

′
r ,

where q stands for the velocity components, the pressure, and the density.
The two dimensional Blasius-like profile obtained from the solution of the
similarity equation is denoted by qlam, q′2d represents the eigenmode of two
dimensional Tollmien–Schlichting (ts) waves with a space wave number of
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Figure 4: Computation domain.

α2d = αr
2d + iαi

2d and a frequency of ω2d, and q′3d denotes the eigenmode of
three dimensional ts waves with a space wave number α3d = αr

3d+iαi
3d and β̃,

which is defined as an angle between the wave and mean flow directions, and
a frequency of ω3d. The disturbance associated with a random white noise is
denoted by q′r which changes from −1 to 1 randomly. The amplitude of the
two dimensional, three dimensional and random noise are denoted by A2d,
A3d, and Ar respectively.

In order to understand the transition, we ran several simulation cases in
the smaller grids of 768 × 64 × 80 . All simulations were carried out on sgi
Origin 3900 computers using up to 16 processors. In the following the type
of transition observed is indicated by an H or K [1, 13].
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Figure 5: Iso-surface of spanwise vorticity for the K-Type transition.
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Figure 6: Iso-surface of spanwise vorticity for the H-Type transition.

3.2 Computational results

The K-type transition is shown in Figure 5 and H-type in Figure 6. Fig-
ure 7 shows the skin friction coefficient calculated from the time-averaged
and spanwise-averaged velocity profile. The skin friction coefficient of the
laminar flow is plotted as a dashed line and the turbulent boundary layer
as a dash-dotted line. The Cf curve from the simulation coincides with the
laminar flow curve before x = 500δin . A sudden growth in skin friction
occurs after x = 500δin indicating the transition from laminar to turbulent
flow. The post-transition Cf level is comparable to that of fully developed
turbulent flow. The fluctuation of during and after the transition represents
the unsteadiness of turbulent flow and the dns results show good agree-
ment between numerical and experimental results when compared for lami-
nar (dashed line) and turbulent (dash-dotted line) flow. This shows that the
validation of dns is achieved (Ducros, [4]) for the case of flow transition over
a flat plate.
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Figure 7: Time and spanwise averaged skin-friction coefficient.
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Figure 8: Time and spanwise averaged velocity profiles along the plate.
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The time-averaged and spanwise-averaged streamwise velocity profiles af-
ter nine periods of time for various streamwise locations are displayed in Fig-
ure 8. The inflow velocity profile at x = 300.79δin is of a typical laminar flow.
At x = 627.9δin , the profile starts to change, and the velocity profiles clearly
become turbulent after x = 800 . The log law of the streamwise velocity is
observed.

This dns code has been validated by nasa Langley researchers for many
different cases related to flow transition including flat plate, cones and swept
wings [8].

4 DNS for flow separation and control

around an airfoil

4.1 Problem definitions and boundary conditions

Numerical simulations are performed for a naca0012 airfoil at an attack
angle of 4◦. The free stream velocity Ur, pressure pr, temperature Tr and
chord length of the airfoil C are selected as the reference velocity, pressure,
temperature and length respectively, and are used to non-dimensionalize the
governing equations. The computational domain is plotted in Figure 9. The
upstream boundary is three chord lengths away from the leading edge of the
airfoil. The upper and lower boundaries are about four chord lengths from
the surface. The outflow boundary is two chord lengths downstream of the
trailing edge. The airfoil is regarded as infinite in the spanwise direction.
In our simulation, the spanwise length is set as Ly = 0.1C , and a periodic
boundary condition is imposed at the spanwise boundaries.

The flow and computational conditions are listed in Table 1. Here ∆x+,
∆y+ and ∆z+ are the mesh sizes scaled by the shear stress on the wall surface.
Grid distributions in the (x, z) plane and on the airfoil surface are shown in
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Figure 9: Computational domain.

(a) (b)

Figure 10: Grid distribution: (a) in (x, z) plane, and (b) on the airfoil
surface.
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Table 1: Flow and computational conditions.
Re = UrC/ν Mr AOA Nx ×Ny ×Nz ∆x+ ∆y+ ∆z+

105 0.2 4◦ 1200× 32× 180 < 13 < 15 < 1

Figure 10. The computational domain is divided evenly into M sub-domains
along the ξ direction when M processors are used. In this work, 24 processors
are used for all cases.

4.2 Computational results and analysis

Three cases were considered:

4.2.1 Baseline case without blowing;

4.2.2 Pulsed blowing;

4.2.3 Blowing jet with a 30◦ pitch angle and a 90◦ skew angle.

All simulations were carried out with a time step equal to 8.35× 10−5C/Ur .
The corresponding cfl number is around 400.

4.2.1 Flow around the airfoil without blowing (baseline case)

Flow separation and vortex shedding appear on the suction surface of the
airfoil (Figure 11), where a separated mixing layer and vortex shedding are
clearly demonstrated by plotting contours of instantaneous spanwise vortic-
ity. The separation zone can be seen clearly from the time averaged velocity
vectors shown in Figure 12. There is no vortex breakdown observed in the
2D simulation since the breakdown is a 3D and non-linear interaction.
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Figure 11: Contours of spanwise vorticity from 2D solution.

Figure 12: Time averaged velocity field.
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Figure 13: Reverse flow distribution on the suction side (Urev = min(u)).

Three dimensional solutions are highly unsteady. Figure 13 shows the
maximum reverse flow in the wall normal direction along the suction surface.
The separated zone appears from x/C = 0.19 to x/C = 0.68 , where the sep-
arated laminar boundary evolves into reattached turbulent boundary layer.
The reverse flow reaches 8% of the free stream velocity at about x/C = 0.5 ,
then increases to just less than 30% of the free stream velocity at about
x/C = 0.6 before rapidly falling to zero at x/C = 0.68 .

The iso-surfaces of instantaneous vorticity in the spanwise direction are
plotted in Figure 14. The transition process and breakdown of the rolling-up
shear layer are clearly demonstrated. The vortices shed from the separated
shear layer are distorted while travelling downstream. The interactions of 3D
structures cause the spanwise vorticity iso-surface to break into small pieces,
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Figure 14: Iso-surface of instantaneous spanwise vorticity.

indicating that vortex breakdown occurs. The boundary layer becomes fully
turbulent after reattachment.

We did not add any perturbation at inflow to trigger the Kelvin–Helmhotz
instability, but our spectrum analysis shows that the flow instability starts
from the wake and, thus, we believe that unsteady wakes produce the ini-
tial disturbance which propagates upstream due to the parabolic feature in
time and elliptic feature in space of the Navier–Stokes equations. The three
dimensional instability that emerges in the simulation originates from the
near wake region, where intensive interactions between the large-scale vorti-
cal structure and the wake occur. The three dimensional instability seems to
be self sustained and leads to the transition to turbulence.

4.2.2 Flow around the airfoil with a pulsed blowing jet

Unsteady blowing [2] is enforced from x0 = 0.153 to x1 = 0.175 , which is
before the separation point xs = 0.19 . The non-dimensional frequency of
blowing F+ = FC/Ur , where C is the chord length and F is the frequency,
is set to be 2 (we now believe 1.4 is a better choice). With this configuration,
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0.1530.1530.1530.1530.1530.1530.1530.1530.1530.1530.153

x/cx/cx/cx/cx/cx/cx/cx/cx/cx/cx/c
0.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.175

Figure 15: Shape functions in time and space.

the blowing velocity is directed in the wall-normal direction and has the
magnitude, for x ∈ [x0, x1] ,

w(x, y, t) = A(0.5− 0.5 cos θx)(0.5− 0.5 cos θy) exp

[
−k

(
2τ̃

T̃
− 1

)2
]

, (44)

where θx = 2π(x − x0)/(x1 − x0) , θy = 2πy/Ly , τ̃ = t − nT̃ where n is the
integer part of τ̃ /T̃ , and T̃ = 1/F+ . The spatial distribution and temporal
variation of the blowing velocity are depicted in Figure 15. The values A =
0.4 and k = 12 were used in this case; these parameters control the blowing
mass rate.

The time integration for unsteady blowing case reached t = 3.73C/U∞ .
Time averaging is performed only over three periods of blowing due to the
high cost of dns. More periods are required to get more accurate results.
Mean velocity vectors are shown in Figure 16. It is obvious that large sepa-
ration zone which is clearly seen in the baseline case shown in Figure 16(a)
is dramatically reduced (almost removed, see Figure 16(b)).

The reduced separation zone can also be seen from Figure 17 in which the
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(a)
U/UrU/UrU/Ur
U/UrU/UrU/UrU/Ur
U/UrU/Ur
U/UrU/Ur

(b)
U/UrU/UrU/Ur
U/UrU/UrU/UrU/Ur
U/UrU/Ur
U/UrU/Ur

Figure 16: Streamwise mean velocity profiles for (a) baseline case, and
(b) blowing case.
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Figure 17: Reverse flow distribution on the suction side.

maximum reverse velocity is depicted against streamwise location. Compared
with Figure 13, the separation zone is much smaller.

The iso-surfaces of spanwise vorticity components are plotted in Fig-
ure 18. The breakdown of the separated shear layer and the development
of the vortex structure can be clearly seen. From the simulation results
and analysis of this pulsed blowing case, we conclude that properly selected
unsteady blowing can trigger the early transition by exciting most unsta-
ble waves and non-linear interactions. The blowing can trigger the Kelvin–
Helmoltz instability as well.
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Figure 18: Iso-surfaces of spanwise vorticity components.

4.2.3 The effect of blowing angle

To study the effect of blowing angle, we set up one case to simulate flow
around the airfoil with pulsed blowing of 30◦ pitch angle and 90◦ skew an-
gles. The pitch angle is defined as an angle between the blowing jet and
wall surface. The skew angle is defined as an angle between the blowing jet
and the inflow direction. We used the same parameters as before except for
k = 300 , which lets the blowing mass be around one fifth of the previous
case in Section 4.2.2. The computational results show that the pitched and
skewed blowing jets with large k obtained a much better efficiency with a sig-
nificant increase in the ratio of lift over drag. Temporal variations of lift and
drag coefficients which are averaged over the spanwise direction are shown
in Figure 19. The pitched jet case has reduced cd and improved cl where
cd and cl are defined as the coefficients of drag and lift, respectively. The
ratio of cl over cd is much improved. The dns results agree qualitatively
with experiments by Bons [2].
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Figure 19: Temporal variations of lift and drag coefficients.

5 LES for wingtip vortex around juncture of

wing and flat plate

5.1 Grid generation

In this simulation we concentrate on the tip vortex behind a juncture of wing
and flat plate. The physical configuration was simplified by a computational
domain, which includes a rectangular wing with a naca0012 airfoil section
and a flat tip, as shown in Figure 20. The span-chord ratio of the wing
is 0.75 .

The one-block mesh generation is used in the present work with a single
C-H topology. Figure 21 shows the C-type grid surrounding the wing on
the flat plate. The transformed computational domain (the ξ-η-ζ space)
consists of the ξ direction which corresponds to the stream-wise direction,
η direction which corresponds to the span-wise direction, and ζ direction
which corresponds to the direction normal to the wing surface. The grid for
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(a) (b)

Figure 20: Grids for (a) the sharp edge, and (b) the rounded edge.

the wing tip is shown in Figure 20.

The computational grid consists of 1536 grid points along the ξ direc-
tion, 128 points along the η direction and 128 points along the ζ direction.
The whole domain is around 6.0C (C is the chord length) long, 8.0C wide,
and 3.8C high. Figure 21 and Figure 20 show every second grid point and
Figure 20 is an enlargement of a local grid.

5.2 Case setup

The near-field wakes behind the juncture was simulated with 25 million grid
points. The case was set up according to the experiment data given by
Chow et al. [3] at Re = 4.6 × 106 , Mr = 0.15 and an attack angle of 10◦.
The non-dimensional time step based on the free stream velocity is around
9.0 × 10−5 C/Ur , where C is the chord length and Ur is the free stream
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Figure 21: H-C type topology.

velocity. The computation was carried out on 64 cpus.

5.3 LES results

The time-dependent pressure and vorticity contour behind the juncture are
depicted in Figure 22 and Figure 23 respectively. Here we chose eight cross-
flow sections to show the spatial evolution of the tip vortex. The cross-flow
sections are chosen at the same locations as Chow et al. [3] used in their
experiment so that we can compare the computational and experimental re-
sults. The tip vortex is clear and easy to be identified in those contours. The
les results agree qualitatively, but not quantitatively with the experimental
results at present.
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Figure 22: Time-dependent pressure contour.

Figure 23: Time-dependent vortex contour.
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6 Conclusions

• dns/les with a high order compact scheme, high order filter, high qual-
ity grid generation, and parallel computation can be used for practical
engineering applications such as flow instability, separation, transition,
flow control and tip vortex.

• dns can simulate the whole process of flow transition including the
K-type and H-type transition and the validation is very good in the
friction coefficient and time-averaged and spanwise-averaged velocity
profiles (log law).

• Separation and transition processes on a naca0012 airfoil with or with-
out jet blowing on the surface have been investigated. Though no ex-
ternal disturbances are introduced, the initial perturbations may come
from the upward traveling acoustic waves which are generated in the
wake. The separated shear layer has an inviscid instability and the
perturbation will be quickly amplified at a rate much higher than that
of the viscous instability. The traveling disturbances trigger the insta-
bility wave which is identified as a Kelvin–Helmholtz instability. The
appearance of 3D motions of the shedding primary vortex, where the
streamwise vortex appears, and nonlinear interactions of disturbances
lead to the sudden growth of disturbances and the generation of high
frequencies. The breakdown then happens. The shear layer becomes
turbulent and reattaches to the surface.

• Properly selected unsteady blowing triggers early transition by excit-
ing the most unstable waves and non-linear interactions. By selecting
appropriate blowing frequencies corresponding to the vortex shedding
frequency with 300 pitch angle and 900 skew angle, the separation
zone is significantly reduced, and drag is decreased while the lift is
maintained at approximately the same level as in the base case.
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• The wing tip vortex can be traced by a high order compact scheme
which has very small dissipation.
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