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Coupled nonlinear oscillations of microbubbles
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Abstract

The coupling effects on the acoustic signature from nonlinear oscil-
lations of a group of microbubbles is investigated. In general, explor-
ing this phenomenon would require solving a set of (linearly) coupled
nonlinear ordinary differential equations (odes). However, assum-
ing that the initial conditions of all bubbles are identical and that
all bubbles are equi-distant from each other simplifies the governing
equations to just a single ode. Numerical data obtained by solving
this ode is used to investigate the effects of bubble population size on
the subharmonics and ultraharmonics of the system. As the number
of bubbles is increased, the natural frequency and the damping of the
system decreases. There is a slight shift in the frequencies at which
the maximum bubble oscillation occur. The amplitude of oscillations
near the main resonance are significantly reduced as the number of
bubble increases.
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1 Introduction

The response of bubbles to an applied external acoustic field and the fields
created naturally by bubbles have been known to play an important role in
many engineering and medical applications. For example, in microfluidics,
the response of microbubbles to an applied sound field has been used to
pump or stir liquids [1, 2]. The acoustic frequency passively emitted by
bubbles has been used to measure the size of bubbles inside opaque industrial
liquids [3]. In the medical arena, ultrasound contrast agents can be regarded
as microbubbles encapsulated with a polymer, protein or lipid shell whose
linear and nonlinear acoustic properties make them very useful in medical
diagnostic imaging [4, 5]. There are also exciting prospects for microbubbles
to biochemically target certain tissue types. For example, the scattering of
ultrasound by targeted microbubbles could be used to diagnose [6, e.g.] and
possibly also destroy even tiny metastatic tumors.

For these reasons, many mathematical models have been proposed to
study the nonlinear nature of gas-bubble oscillations in a liquid. Most of
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the mathematical models look very similar to the classical Rayleigh–Plesset
equation
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where R(t) is the instantaneous bubble radius, R0 is the bubble radius at
equilibrium, µ is the viscosity of the liquid, ρ is the density of the liquid,
σ is the surface tension of the liquid and κ is the polytropic exponent of
the gas inside the bubble. Only air bubbles in water will be considered here
so all simulations are carried out with ρ = 1000 kg/m3, µ = 0.001 kg/m/s,
κ = 1.33 , Pv = 2330Pa, P0 = 100000Pa. Pext(t) is the imposed external
pressure field and it is typically a known function of time. Owing to the
nonlinear nature of the governing equations, it is difficult to obtain analytical
solutions. Numerical methodology must be employed [7] to provide insights
into the physics of the problem.

In most of the studies on nonlinear bubble oscillations carried out thus
far, the bubbles are assumed to be sufficiently far apart and the effects due
to bubble interactions have been neglected. The integrated properties (for
example, radiated pressure) of a cluster of bubbles are then calculated by
simply summing up the contributions of individual bubbles [8, e.g.]. However,
recently Manasseh [9] has shown that if the bubbles are close to one another,
coupling effects become significant and cannot be neglected.

Here the coupling effects on the acoustic signature from nonlinear oscil-
lations of a group of microbubbles are investigated. This involves solving
a set of (linearly) coupled nonlinear ordinary differential equations. Data
obtained from the numerical computations will be used to investigate the
frequency response of equally sized microbubbles as the number of bubbles
in the population is increased. Analyses on the effects of population size on
the subharmonics and ultraharmonics are discussed.
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2 Theory

Despite several limitations, the classical Rayleigh–Plesset equation (1) is one
of the most widely used models in the simulation of radial bubble oscillations.
The properties of this model has been extensively investigated [7]. One major
drawback of this model is that it assumes the speed of sound is infinite in
the liquid, which could be an issue if the group of bubbles spans a significant
fraction of the wavelength of sound. This mathematical model also neglects
effects of heat and mass transfer and gas dissociation that could be significant
at large oscillation amplitudes. More complex models have been proposed
and Vokurka [10] has performed a detailed analysis on the various advantages
and disadvantages of the many different models. Here we address cases where
the bubbles are close, so the liquid sound speed are neglected, and oscillation
amplitudes are not extreme; thus Eq. (1) is a reasonable starting point.

To account for the effects of other nearby bubbles, a coupled-oscillator
approximation is used, similar to that of previous analyses of linearly coupled
pairs of linearly-oscillating bubbles [11, 12, 13, 14, e.g.] but for an arbitrary
number Nbub [9, e.g.]. Effectively, the Pext term in Eq. (1) is modified by the
pressure scattered by the other bubbles [13, e.g.] as,

Psi =

Nbub∑
j 6=i

ρ

sij

d

dt

(
R2

j Ṙj

)
, (2)

where sij = sji is the distance of bubble i from bubble j. The total external
pressure on bubble i is then

Pext,i = Psi + PA,i(t) . (3)

where PA,i(t) is the applied pressure of any external field on bubble i. Com-
bining Eqs. (1) and (3) gives the following coupled governing equation for
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coupled bubble oscillations,
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We assume that sij = D = constant. Thus the distance of any bubble to
any other bubble in the bubble population is constant. For Nbub = 3 this
situation corresponds to a group of bubbles arranged at the vertices of an
equilateral triangle. For Nbub = 4 , the bubbles are placed at the vertices of
an equilateral tetrahedron. Note that it is not physically possible to have a
situation where Nbub > 4 for equi-spaced bubbles.

We further assume that the same external driving pressure field acts on
all the bubbles, that is, PA,1(t) = PA,2(t) = PA,3(t) = PA,4(t) = PA(t) ,
then Ri(t) = Rj(t) = R(t) . Substituting into Eq. (4) with simple algebraic
manipulation gives
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Equation (5) represents the idealized case where all the bubbles are equally
spaced, have the same initial conditions and are excited by the same exter-
nal pressure field. Hence, all bubbles have the same radius and the results
presented here would be directly comparable only with experiments in a very
specifically designed microfluidic system, rather than experimental data from
a group of contrast-agent microbubbles in vivo. However, the results may be
used as both an ideal reference for a microtechnological application, and to
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show the possible trends of a contrast-agent system as the number of bub-
bles is increased from one towards a number that is more typical in medical
applications.

Equation 5 is linearised by setting R(t) = R0 + ε(t) and ignoring higher
order terms in ε(t), giving,(
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Thus, in the absence of damping, the linear resonance frequency for this
bubble system is
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3 Behaviour of unforced system

This initial investigation analyses the behaviour of Eq. (5) for cases where
PA(t) = 0 . Eq. (5) is a nonlinear second order ordinary differential equation
with one stationary point occurring at Ṙ = 0 and R = R0 . Following [15],
the qualitative behaviour of such a system is studied by plotting the trajecto-
ries in the phase plane (with coordinates R(t) and Ṙ). The phase portrait for
the system for R0 = 10 µm is shown in Figure 1. The trajectories represent a
stable clockwise spiral illustrating that in the absence of any external forcing,
the radius of the bubble will eventually tend to rest (Ṙ = 0) at R = R0 .
The qualitative behaviour of the system does not appear to be dependent
upon Nbub. Eq. (6) indicates that the amount of damping decreases with
increasing Nbub. This is illustrated in Figure 2 which shows the temporal
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Figure 1: Phase portrait of the system defined by Eq. (5). V ∗ =
Ṙ/(R0/T ) .
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Figure 2: The evolution of R(t) for a freely oscillating bubble with R0 =
10 µm. (a) Nbub = 1 and (b) Nbub = 4
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Figure 3: Single bubble response. (a) R(t)/R0 for R0 = 10 µm. The pres-
sure amplitude, α = 0.6 bar and frequency, fext/f0 = 0.3 . (b) Corresponding
Fourier spectra of the steady-state oscillation.

evolution of R(t) with Nbub = 1 and 4. The initial conditions for the sim-
ulation were R(t = 0) = 0.5R0 and Ṙ(t = 0) = 0 . Visual comparison of
the figures clearly shows that there is a higher damping for the system with
Nbub = 1 .

4 Forced system

In the simulations described below, the bubble system will be forced by
the oscillating pressure field PA = α sin(2πfextt) , where α and fext are the
amplitude and frequency of the external pressure field respectively. In all
simulations discussed here, the system is initialized with R(t = 0) = R0

and Ṙ(t = 0) = 0 . There are two different timescales for the simulations
described here. One is the period of the linearized equations (T0 = 1/f0),
and the other one is the period of the forced oscillations (Text = 1/fext).
We limit our scope of study to cases where α = 0.6 bar and Nbub = 1, 2, 3
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and 4. Figure 3 shows a typical time series for one of our simulations with
Nbub = 1 . The radius R(t) goes through an initial transient phase before
settling down to a steady-state oscillation. This behaviour is typical for all
the simulations discussed here and is in agreement with the single-bubble
calculation of Lauterborn [7] for the some parameters. If the applied pres-
sure amplitude α is too large, then R(t) undergoes wild fluctuations and does
not settle down to a periodic behaviour. It is well documented in the exten-
sive literature on cavitation and sonoluminescence [16, for references therein,
e.g.] that such behaviour represents extremes for which the simple Rayleigh–
Plesset equation (1) requires modification. The data in Figure 3(a) shows
that periodic steady state oscillations occur at approximately t/T > 15 ,
where

T = max(T0, Text) . (8)

In many of our simulations, the initial transients take a much longer
time to die out. Sometimes, steady-state periodic oscillations only occur
when t/T > 150 . The energy spectra for the steady-state signal is shown
in Figure 3(b). Most of the energy occurs in discrete frequencies. This
behaviour is typical in all the data reported in this paper. The frequency
response curves, that is, the plot of (Rmax−R0)/R0 versus fext/f0 is shown in
Figure 4, where Rmax is the maximum radius of the bubble during its steady-
state oscillation. Data samples for the calculation of Rmax were only taken
from 200 < (t/T ) < 250 to ensure that any effects from the initial transients
can be ignored. The frequency response curves for a bubble system driven
with a pressure amplitude α = 0.6 bar and with R0 = 10 µm and D = 50 µm
for Nbub = 1, 2, 3 and 4 is shown in Figure 4. Following the terminology
of Lauterborn [7], the peaks labelled ‘A’ represent the main harmonics, the
subharmonic is labelled ‘C’ and the ultraharmonics are labelled ‘B’. Similarly
to the finding of Lauterborn [7] for a single bubble, the main resonance for
our multi-bubble case is in the region of fext/f0 = 1 . The main resonance
peak is asymmetric: it ‘leans’ towards lower frequencies and there is a sudden
discontinuity in the plot as fext is lowered. Figure 5 shows the close-ups of two
regions of Figure 4, that is, in the vicinity where fext/f0 = 10−0.1 ≈ 0.7943



4 Forced system C111

10
−1

10
0

10
1

0

0.5

1.0

1.5

f
ext
/f
0

(R
m
ax
−
R
0)
/R
0

A

A

A

AA

A

AA B
B

C

Figure 4: Frequency response curves for R0 = 10 µm and the separation
between bubbles, D = 50 µm. Nbub = 1 , Nbub = 2 , Nbub =
3 , Nbub = 4 .
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Figure 5: Close-ups of frequency response curves of two regions of Figure 4.
Top panel: fext/f0 = 10−0.1 ≈ 0.7943 ; Bottom panel: fext/f0 = 10−0.21 ≈
0.6166 . All parameters as for Figure 4. Note different vertical scales in top
and bottom panels.
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Figure 6: Energy spectra of signal: (a) fext/f0 = 10−0.1 ; (b) fext/f0 =
10−0.21 . α = 0.6 bar and R0 = 10 µm and D = 50 µm. ◦ Nbub = 1 ,
Nbub = 2 , � Nbub = 3 , ∇ Nbub = 4 .

(in the vicinity of a harmonic, the main resonance) and fext/f0 = 10−0.21 ≈
0.6166 (in the vicinity of an ultraharmonic).

Now the effect of the presence of more than one bubble is clear. The
frequency response curves in Figure 5 show different behaviours as Nbub is
varied. In the vicinity of the main harmonics, (that is, the peaks labelled ‘A’),
as we lower the value of fext, the value of Rmax gets smaller. However, in the
vicinity of the ultraharmonics, (that is, the peaks labelled ‘B’), as we lower
the value of fext, the opposite trend is observed.

The energy spectra for the simulation computed with fext/f0 = 10−0.1

and fext/f0 = 10−0.21 is shown in Figures 6. In the region of the main
harmonics, Figure 6(a) shows a definite trend that as we increase Nbub, the
energy at higher frequencies decreases. However, close to the ultraharmonics,
Figure 6(b) shows that the energy spectra are not so sensitive to the number
of bubbles in the system.
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5 Conclusions

The governing equation for a system of equally sized bubbles at the same
distance from each other was derived; it is valid for a system with four or
less bubbles. Analyses found that the natural frequency and the damping of
the system decreases as the number of bubbles increases. Numerical simula-
tions close to the main harmonic of the system show that there is a strong
effect on the high frequency components of the signal. However, close to the
ultraharmonics the energy spectra are relatively insensitive to the number of
bubbles in the system. As the number of bubbles is increased, the response
curves at the main resonance and the ultraharmonic shift, decreasing the
main resonance but slightly increasing its ultraharmonic.
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