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Abstract

Multiscale modelling methodologies build macroscale models of
materials with complicated fine microscale structure. We propose a
methodology to derive boundary conditions for the macroscale model
of a prototypical non-linear heat exchanger. The derived macroscale
boundary conditions improve the accuracy of the macroscale model.
We verify the new boundary conditions by numerical methods. The
techniques developed here can be adapted to a wide range of multiscale
reaction-diffusion-advection systems.
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1 Introduction

Multiscale modelling techniques are a developing area of research in engi-
neering and physical sciences. These techniques are needed when the system
being modelled possesses very different space-time scales and it is infeasible
to simulate the whole domain on a microscale mesh (Dolbow et al. 2004,
Kevrekidis and Samaey 2009, Bunder & Roberts 2012). But macroscale
boundary conditions are rarely derived systematically; instead macroscale
boundary conditions are often proposed heuristically (Pavliotis and Stuart
2008, Mei and Vernescu 2010, Mseis 2010). We developed a systematic method
to derive boundary conditions for one-dimensional linear problems with fine
structure by cell mapping (Chen et al. 2014). Here we extend the method to
a prototypical non-linear heat exchanger problem.

We mathematically model the counter flow two-stream heat transfer shown in
Figure 1. Let x measure nondimensional distance along the heat exchanger
which is of length L, 0 6 x 6 L , and let t denote nondimensional time. The
field a(x, t) is the temperature of the fluid in one pipe and field b(x, t) is that
in the other pipe. A quadratic reaction is included as an example nonlinearity
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Figure 1: A schematic diagram of a heat exchanger. The red pipeline carries
fluid to the right, and the blue pipeline carries fluid to the left. Heat exchanges
between the pipes.
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The lateral diffusion also included in these pdes makes the derivation of
macroscale boundary conditions challenging.

Various mathematical methodologies derive from pdes (1) the macroscale
model
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+ 4
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∂x2
+ O(C4 + ∂4x) , (2)

for the mean temperature C(x, t) := [a(x, t)+b(x, t)]/2 . For example, centre
manifold theory rigorously derives this effective macroscale model (Roberts
2013), as does homogenization (Pavliotis and Stuart 2008, Mei and Vernescu
2010). This macroscale model combines an effective cubic reaction, with an
effective nonlinear advection, and enhanced lateral diffusion. The necessary
analysis to derive the model (2) is based around the equilibrium a = b = 0 ,
and applies to the slowly-varying in space solutions in the interior of the
domain. For example, in the interior it predicts the temperature fields are[
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b

]
= C
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1

]
+

(
1

2
C2 −

∂C

∂x

)[
1
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]
+ O(C3 + ∂3x) . (3)

The challenge of this article is to provide sound boundary conditions for the
macroscale model (2).
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Prototypical microscale boundary conditions for microscale system (1) are
taken to be the Dirichlet boundary conditions

a(0, t) = a0 , b(0, t) = b0 , a(L, t) = aL , and b(L, t) = bL , (4)

where a0, aL, b0 and bL are potentially slowly varying functions of time.
Section 3 derives nonlinear macroscale boundary conditions (12) for the
macroscale mean temperature model (2). For example, the linearisation of
the macroscale boundary condition (14) derived from the Dirichlet boundary
conditions (4) is the Robin condition

C− 1
2

∂C

∂x
≈ 1

4
b0 +

3
4
a0 at x = 0 .

Importantly, this is not a Dirichlet boundary condition despite the microscale
boundary conditions and the definition C := (a+ b)/2 together suggesting
boundary conditions are (incorrectly) C(0, t) = (a0 + b0)/2 .

Figure 2 plots microscale and macroscale solutions for the heat exchanger
at a particular time. The two solid lines plot the microscale solution a(x, t)
and b(x, t) of microscale pde (1) with microscale boundary conditions (4).
The black dashed line plots the mean temperature model (2) with clas-
sic Dirichlet boundary conditions C(0, t) = (a0 + b0) /2 and C(L, t) =
(aL + bL) /2 as would be commonly invoked (Mei and Vernescu 2010, Mseis
2010, Ray et al. 2012). The macroscale model (2) performs poorly with
these heuristic Dirichlet boundary conditions, especially in the interior of the
domain (here 5 6 x 6 25). But the interior is where the macroscale model (2)
should be valid. The macroscale model (2) represents the interior dynamics
but cannot resolve the details of boundary layers (Roberts 1992). With our
derived boundary conditions, the macroscale solution (red line in Figure 2)
fits the microscale solution (solid lines) in the interior: the microscale fields
a(x, t) and b(x, t) being given by equation (3). Our systematic derivation of
boundary conditions is needed for macroscale models to correctly predict the
interior dynamics.

The key to our approach is to explore the effect of boundary layers by treating
space as a time-like variable (e.g., Chen et al. 2014). However, the heat
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Figure 2: Example solutions of the heat exchanger (1) in domain 0 6 x 6
L = 30 at time t = 21 . The two solid lines plot the the temperature of the
two pipes, a(x, t) and b(x, t). The dashed lines are solution of the macroscale
model (2) at t = 21 : (black dashed) with heuristic Dirichlet boundary
conditions; and (red dash-dots) with our systematically derived boundary
conditions.
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exchanger problem (1) is challenging because of the nonlinearity. Here, a
normal form coordinate transformation separates the spatial evolution in
the boundary layers into a slow manifold, stable manifold and unstable
manifolds. This separation empowers a transformation of the given physical
boundary conditions (4) into boundary conditions (13) for the macroscale
interior model (2).

2 A normal form of the spatial evolution

The macroscale model (2) is slow so the dominant terms in the boundary layers
are due to the derivatives of spatial structure. Thus, to derive macroscale
boundary conditions for slow evolution (2) we treat the time derivative ∂/∂t
as a negligible operator (Roberts 1992). To put heat exchanger system (1)
into the form of a dynamical system in time-like variable x we define a ′ := ∂a

∂x

and b ′ := ∂b
∂x

. Then rearranging system (1) into dynamical system form, with
∂t = 0 for quasi-steady solutions, gives
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We analyse the (spatial) dynamics of this system with ‘initial condition’ at
x = 0 of the given microscale Dirichlet boundary conditions (4).

Start by basing the analysis of (5) around the equilibrium at the origin,
a = b = a ′ = b ′ = 0 . The eigenvalues of the system linearised about the
origin are 0 (twice) and ±

√
2 . The eigenvalues of zero correspond to an

eigenvector of (1, 1, 0, 0) and a generalised eigenvector of (−1, 1, 1, 1). Hence
the spatial ode system (5) contains two centre (slow) modes, one stable mode
and one unstable mode.

Roberts (2014a,) provides a web service to construct by computer algebra a
coordinate transform which separates stable, unstable and centre manifolds.
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However, the web service does not directly apply to systems whose linearisation
has a generalised eigenvector. To circumvent the generalised eigenvector, we
choose to embed the ode system (5) as the ε = 1member of the one parameter
family of systems
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where the last vector on the right-hand side is treated as a perturbative
term: the parameter ε counts the order of artificial linear perturbation.
The linear operator in system (6) now has no generalised eigenvector: its
eigenvalues are 0 (twice) and ± 2

3
, with corresponding eigenvectors (1, 1, 0, 0),

(−1, 1, 1, 1),
(
− 3
2
, 3
2
, 0, 1

)
,
(
− 3
2
, 3
2
, 1, 0

)
. The web service (Roberts 2014a) then

finds a normal form coordinate transform as a multivariate power series in
variables sj and parameter ε. Substituting ε = 1 into the results reveals
the centre manifold, stable manifold and unstable manifold for the spatial
ode (5).

The three manifolds can be parametrised as we choose. We choose the defini-
tion of the two parameters for the slow manifold to be the mean temperature
s1 = C and its spatial derivative s2 = ∂C

∂x
:

s1 :=
1
2
(a+ b) = C , s3 :=

1
8
(3a− 3b− 3a ′ + 9b ′) ,

s2 :=
1
2
(a ′ + b ′) =

∂C

∂x
, s4 :=

1
8
(3a− 3b+ 9a ′ − 3b ′), (7)

where s3 parametrises the stable manifold, and s4 parametrise the unstable
manifold. Then the web service (Roberts 2014a) derives the coordinate
transform (8) giving a, b, a ′ and b ′ as power series of s1, s2, s3, s4 and ε.
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When ε = 1 the power series are

a ≈ s1 − s2 + 0.25s3 + 1.5s21 + 6s
2
2 − 1.1s1s3 − 3.4s2s3 − 0.035s

2
3

+ 0.75s4 + 0.74s2s4 + 0.56s3s4 − 0.25s24 , (8a)
b ≈ s1 + s2 − 0.75s3 − 1.5s21 − 6s

2
2 − 0.74s2s3 + 0.25s

2
3

− 0.25s4 − 1.1s1s4 + 3.4s2s4 − 0.56s3s4 − 0.035s24 , (8b)
a ′ ≈ s2 + 1.5s1s2 − 0.17s3 + 0.56s1s3 + 0.91s2s3 + 0.47s23

+ 0.5s4 − 0.56s1s4 + 1.2s2s4 − 0.33s24 , (8c)
b ′ ≈ s2 − 1.5s1s2 + 0.5s3 + 0.56s1s3 + 1.2s2s3 − 0.33s23

− 0.17s4 − 0.56s1s4 + 0.91s2s4 − 0.047s24 . (8d)

Evaluating the power series at ε = 1 recovers the coordinate transform
applicable to the original spatial system (5). For simplicity we only record
these and later expressions correct to quadratic terms in sj, that is, with
cubic errors in the multinomial, and we record coefficients to two significant
figures. The corresponding evolution of the spatial system (5) in these new
variables sj is also provided by the web service which determines

∂s1

∂x
≈ s2 , (9a)

∂s2

∂x
≈ 1.5s1s2 , (9b)

∂s3

∂x
≈ −0.67s3 − 0.75s3s1 − 0.94s3s2 , (9c)

∂s4

∂x
≈ +0.67s4 − 0.75s4s1 + 0.94s4s2 . (9d)

The normal form of the transformed system (9) has useful properties. Since
∂s3
∂x

= g3(s1, s2)s3 and ∂s4
∂x

= g4(s1, s2)s4 for some functions gj, the three
invariant manifolds of the system (9) are s3 = 0 , s4 = 0 and s3 = s4 = 0 .
From the linearisation of (9), these are the centre-unstable, centre-stable,
and slow manifolds, respectively. Further, because ∂s1

∂x
and ∂s2

∂x
are functions

of only s1 and s2, the planes of s1 and s2 constant are isochrons of the slow
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manifold (Roberts 1989) (sometimes called the leaves of the foliation, fibres,
a fibration, fibre maps or fibre bundles (e.g., Murdock 2003, pp.300–2)).

One might query whether the transformation (8) and (9) is valid given that it
is obtained by a power series in artificial parameter ε that is then evaluated
at ε = 1 . The coefficients appear to converge well to the given values, but as
an independent check we also embedded the spatial ode (5) into the different
family of problems
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Performing the same algebraic construction, but from this quite different base,
we find system (10) results in the same transform (8) and evolution (9). This
confirms the perturbative approach via embedding.

3 Projection reveals boundary conditions

This section focuses on the boundary layer near x = 0 . As shown by the
solid lines in Figure 2, the microscale boundary conditions at x = 0 force
a boundary layer in the microscale model (1). However, the macroscale
model (2) does not resolve the boundary layer. Forcing the macroscale model
to pass through (a0 + b0)/2 introduces an error in the interior of the domain,
as shown by the dashed black line in Figure 2. Here we derive an improved
boundary condition at x = 0 which reduces the interior error caused by the
poorly chosen macroscale boundary condition.

The boundary layer must lie in the centre-stable manifold s4 = 0 because if
there was any component s4 6= 0 , then this would grow exponentially quickly
in space and dominate the solution across the whole domain. Algebraically we
obtain the centre-stable manifold by substituting s4 = 0 into the coordinate
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Figure 3: Schematic plot of centre-stable manifold near the boundary x = 0 .
The green plane is the centre manifold. The blue solid line is the set of values
allowed by the microscale boundary condition at x = 0 . The blue dotted line
is the projection of the microscale boundary values onto the slow manifold.
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s3

transform (8): the terms in (8) are arranged so that this simply means
omitting the second line of each of the four pairs of lines.

Then, as plotted schematically in Figure 3, the two Dirichlet boundary
conditions (4) at x = 0 form a one dimensional curve (solid blue line) of
allowed values in the three-dimensional centre-stable manifold parametrised
by s1, s2 and s3. Recall a0 and b0 are the boundary values at x = 0 from
boundary conditions (4). The first two components on the centre-stable
manifold (s4 = 0) of (8) reveal the microscale constraints on the boundary,
upon defining s0i := si

∣∣
x=0

for i = 1, 2, 3 ,[
a0
b0

]
≈

[
s01 − s

0
2 + 0.25s03 + 1.5s012 + 6s02

2
− 1.1s01s03 − 3.4s02s03 − 0.035s03

2

s01 + s
0
2 − 0.75s03 − 1.5s01

2
− 6s02

2
− 0.74s02s03 + 0.25s03

2

]
.

(11)
These equations implicitly determine the solid blue curve in Figure 3. To
explicitly describe the curve, recall that this is a power series with cubic errors
and so we just need to consistently revert the series to give, say, the boundary
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values s01 and s03 as a function of s02, a0 and b0. Algebra determines

s01 ≈
(
0.25b0 − 0.29b20 + 0.75a0 − 0.63a0b0 + 0.18a

2
0

)
+ s02 (0.5− 2.8b0 + 3.7a0) + 3s

0
2

2 , (12a)
s03 ≈

(
−b0 − 0.19b20 + a0 − 2.3a0b0 − 0.56a

2
0

)
+ s02 (2− 4.6b0 + 3.8a0) − 5.2s

0
2

2 . (12b)

Since the slow dynamics in the interior of the domain must lie on the slow
manifold s3 = 0 , appropriate boundary conditions for the interior dynamics
must come from projecting these allowed boundary values onto the slow
manifold. Because of the special normal form of the transformed system (9),
the slow variables s1 and s2 evolve independently of the fast variables s3
and s4, and the appropriate projection is the orthogonal projection along the
isochrons s1 and s2 constant onto the plane s3 = 0 —shown by the red lines
in Figure 3. Equation (12a) describes the projected curve in the s1s2-plane
illustrated by the blue dashed line in Figure 3. Recall from the amplitude
definition (7) that C and s1 are the same. Hence substituting s01 = C and
s02 =

∂C
∂x

into equation (12a) forms the boundary condition at x = 0 :

C− (0.5− 2.8b0 + 3.7a0)
∂C

∂x
− 3

(
∂C

∂x

)2
≈
(
0.25b0 − 0.29b20 + 0.75a0 − 0.63a0b0 + 0.18a

2
0

)
. (13)

This nonlinear Robin boundary condition produces the correct macroscale
slowly varying interior domain solutions of the microscale model pde (1).

4 A numerical example

As an example, let the boundary values be a0 = 0.2f(t) and b0 = 0 for
f(t) = tanh2 t varying smoothly but quickly from f(0) = 0 to 1. Macroscale
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boundary condition (13) gives the macroscale boundary condition at x = 0
for mean temperature model (2)

C− [0.75f+ 0.5]
∂C

∂x
− 3

(
∂C

∂x

)2
= 0.15f+ 0.007f2 . (14)

Macroscale boundary conditions on the right One method to derive
the macroscale boundary conditions at x = L is to appeal to symmetry.
Define a new spatial coordinate x̃ = L − x measuring distance from the
boundary into the interior, and define new field variables ã(x̃, t) = −b(x, t) ,
b̃(x̃, t) = −a(x, t) and therefore C̃(x̃, t) = −C(x, t) . Then the pde system (1)
is symbolically identical in the tilde and plain variables. But the boundary
conditions (4) at the right boundary x = L are transformed to Dirichlet
boundary conditions at x̃ = 0 of ã(0, t) = −bL and b̃(0, t) = −aL . Then the
derivation of Sections 2 and 3 apply in the same way to the tilde problem.
After computing the macroscale boundary conditions in coordinate x̃ we
transform back to the original coordinate x.

For example, assume aL = 0 and bL = 0.2 . The iteration scheme in Section 3
computes the macroscale boundary condition on the boundary x = L (x̃ = 0):

− C̃− [0.75f− 0.5]
∂C̃

∂x̃
+ 3

(
∂C̃

∂x̃

)2
= 0.15f− 0.007f2 . (15)

By the chain rule ∂x̃
∂x

= −1 , and substitute C̃(x̃, t) = −C(x, t) into boundary
condition (15):

C− [0.75f− 0.5]
∂C

∂x
+ 3

(
∂C

∂x

)2
= 0.15f− 0.007f2 . (16)

Numerics verifies the macroscale boundary conditions derivation
Figure 2 plots a snapshot of the simulations on microscale model (1) and
mean temperature model (2) for two cases: the Dirichlet boundary conditions
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C0 = (a0 + b0) /2 and CL (aL + bL) /2 ; and our systematic boundary condi-
tions (14) and (16). Using finite differences we convert the system of two
pdes (1) into a system of odes. Then Matlab’s ode15s applies a variable
order method to compute the solution of the system of odes (Shampine et al.
1999).

The numerical result is as expected. The macroscale model with systematic
boundary conditions (13) model the interior domain microscale dynamics
much better than that with heuristic Dirichlet boundary conditions.

5 Conclusion

We systematically derived macroscale boundary conditions from microscale
Dirichlet boundary conditions. This methodology can be extended to mi-
croscale Neumann and Robin boundary conditions. For the microscale
Dirichlet boundary conditions, we evaluated the first two components of
the centre-stable manifold (8a)–(8b) at x = 0 to reveal the microscale bound-
ary constraints (11). If the microscale boundary conditions were Neumann,
then we would use the last two components, (8c)–(8d). If the microscale
boundary conditions were Robin, then we would use linear combinations of
the transform (8). The methodology also applies to more general multiscale
modelling of pdes (Roberts 1992).

Future research will generalise the methodology to derive boundary conditions
for homogenized models of multiphase materials. Currently, such macroscale
boundary conditions are often proposed heuristically without sound mathe-
matical arguments (e.g., Mei and Vernescu 2010, Pavliotis and Stuart 2008).
Our systematic approach to macroscale boundary conditions will improve the
accuracy the macroscale modelling of multiphase materials. Future applica-
tions also include the modelling of spatial patterns. Currently we only know
good boundary conditions for a few special cases of the modulation pdes
or of the phase equation. The aim of our systematic approach is to better
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predict boundary effects on the long-time evolution of spatial patterns.
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