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A parametric study of droplet deformation
through a microfluidic contraction
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Abstract

A numerical parametric study of droplet deformation within an
axisymmetric micro-fluidic contraction is performed. The simulations
use a transient Volume of Fluid finite volume algorithm and cover
parameter ranges representative of micro-sized liquid-liquid systems.
We consider two disperse continuous viscosity ratios. When the phases
have equal viscosities, the predicted droplet shapes range from short
‘slugs’ constrained by the contraction walls through to long thin ‘fil-
aments’. When the disperse phase viscosity is lower than that of the
continuous phase, capillary waves and other instabilities develop along
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the droplet surface, leading to more complex shape development and
associated fluid dynamics.
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1 Introduction

The deformation of a droplet as it passes through a microfluidic contrac-
tion is a fundamental flow problem having relevance to a broad range of
Micro-Electro-Mechanical Systems (mems) applications. A characteristic of
microfluidic flows is that surface forces assume a greater importance than in
conventionally scaled flows. For flows involving more than one liquid, this
implies that capillary effects are more dominant than in conventional flows,
and this presents new challenges when modeling such systems.

There have been few experimental studies concerned with immiscible flu-
ids passing through micro-fluidic contractions. An exception is the work of
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Anna, Bontoux & Stone [1] who used a micro-fluidic contraction as a ‘flow
focusing’ device to break a stream of disperse phase fluid into droplets. The
deformation of larger, millimetre sized droplets moving through contractions
has been studied experimentally by several researchers, including Han & Fu-
natsu [4]. Numerical investigations of droplets moving through contractions
have generally employed the creeping flow approximation; however, Whyte
et al. [12] used the full Navier–Stokes equations when simulating droplet
deformation through millimetre sized contractions. Droplet deformation in
general extensional and shear flows has been extensively studied both exper-
imentally and numerically. Eggers [3] and Stone [9] give good reviews of this
topic.

In this study we analyse and discuss the effect that the Reynolds number,
surface tension strength and the disperse continuous phase viscosity ratio
have on the deformation of a droplet as it passes through an axisymmetric
contraction. We consider parameter ranges that are relevant to liquid-liquid
systems (for example, water in oil) and characteristic of mems applications,
and perform the simulations using a transient Volume of Fluid (vof) finite
volume algorithm.

2 Problem description

As shown in Figure 1, the problem under consideration consists of a droplet
entrained in a continuous liquid phase passing through a 4 : 1 axisymmetric
contraction. All lengths are non-dimensionalised by the radius of the inlet R∗

so that the contraction radius is 1/4. The contraction length is set to 5 and
the initial droplet diameter to 1.

Three equations describe motion throughout the disperse (that is, droplet)
and continuous phases: a continuity equation, a volume-averaged incompress-
ible Navier–Stokes momentum equation, and an advection equation which
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Figure 1: The geometry used in the computational problem. All lengths
are normalised by the inlet radius R∗ and cylindrical coordinates (r, z) are
used.

describes the evolution of the disperse phase volume fraction φ;

∇ · u = 0 , (1)

∂ρu

∂t
+ ∇ · ρuu = −∇p +

1

We
κδ(x)n +

1

Re
∇ · µ[∇u + (∇u)T] ,(2)

∂φ

∂t
+ ∇ · φu = 0 . (3)

All three equations are employed in a non-dimensional form. The velocity
is scaled by the average inlet velocity v∗, density by the continuous phase
density ρ∗c, and viscosity by the continuous phase viscosity µ∗c. An asterix
denotes a physical quantity.

The second term on the right of equation (2) is a surface tension induced
stress jump which occurs at the disperse continuous phase interface. In this
term κ is the signed local curvature of the interface, δ(x) is the Dirac delta
function, non-zero only on the interface, and n is a unit vector directed
normal to the interface and into the disperse phase. As equation (2) is applied
over both phases, the viscosity µ is a function of the local volume fraction φ,
and varies between 1 and the disperse continuous phase viscosity ratio, µd =
µ∗d/µ

∗
c . Two different viscosity ratios are considered in the simulations, µd =

0.1 and 1. The density is set to be equal in both phases, and gravitational
forces are neglected as their effect in liquid-liquid micro-sized flows is small.
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In this study the behaviour of the droplet as it passes through the con-
traction is determined by the magnitude of three forces — inertial, viscous
and surface tension. Ratios between these forces are given by the Reynolds
(Re), Weber (We) and capillary (Ca) numbers, defined by

Re =
ρ∗cv

∗R∗

µ∗c
, We =

ρ∗cv
∗2R∗

σ∗
and Ca =

We

Re
=

v∗µ∗c
σ∗

,

respectively. An order of magnitude analysis on equation (2) shows that
the magnitude of surface tension forces relative to both viscous and inertial
forces can be measured via

S =
1

We + Ca
=

σ∗

v∗µ∗c + ρ∗cv
∗2R∗ .

As a balance between three forces determines droplet behaviour, only two of
the above non-dimensional numbers (along with µd) are required to classify a
particular flow regime. In discussing the simulation results we use Re and S
— Re specifies the ratio of inertial to viscous forces acting in the flow, while S
specifies the magnitude of surface tension present, relative to the other forces
combined.

3 Simulation method

The simulations use a finite volume code due to Rudman [8], adapted to
model shear-thinning fluids. This code has been successfully used to model
the formation and subsequent ‘pinch-off’ of both Newtonian and non-Newtonian
pendant drops [2] and the deformation of Newtonian droplets through mil-
limeter sized contractions [12]. The Volume of Fluid (vof) technique tracks
the disperse continuous phase interface, and surface tension forces are ap-
plied using a variation of the Continuum Surface Force (csf) model. The
vof function is advected using the Youngs scheme [13]. The domain is dis-
cretised on a uniform, staggered mesh.
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All of the simulations presented here use a mesh of dimensions 64× 768 .
Using a finer mesh did not significantly alter droplet deformation behaviour.
We assume the fluid entering the domain has a fully developed Poiseuille
profile; tests show that droplet behaviour within the contraction is quite in-
sensitive to the form of this profile. At the domain exit the pressure gradient
normal to the outlet port is chosen to ensure global mass conservation. All
domain boundaries are non-slip and non-wetting with respect to the disperse
phase liquid. Non-wetting boundaries are used as a thin film of continuous
phase fluid usually separates the disperse phase fluid from any walls in mi-
crofluidic experiments [1, for example]. Each simulation is performed on a
single 2.4GHz Xeon processor. Due to constraints on viscous and capillary
time steps, a complete run requires up to several weeks to complete.

4 Results: equal viscosities, µd = 1

A series of droplet deformation simulations was conducted with µd = 1 .
Some images from these simulations are shown in Figure 2, along with the
simulation locations on a Ca and We phase chart. The phase chart also
shows lines of constant Re and S. The Re lines show that viscous forces
dominate inertial forces in the top left corner of the chart while inertial forces
dominate viscous forces in the bottom right. The S lines show that surface
tension forces are weak in the top right corner and strong in the bottom left.

The simulations were conducted at the intersection points between lines
of constant Ohrnesorge number (Oh =

√
We/Re = µ∗c/

√
ρ∗cσ

∗R∗) and lines
of constant We. The Ohrnesorge number is a function only of the droplet
dimensions, surface tension coefficient and continuous phase properties. If
these parameters are all constant, then We (or Re) can be regarded as a non-
dimensional velocity. Thus, simulations conducted at various values of We
(or Re) along a line of constant Oh are representative of experiments done
with the same experimental setup, but with a variety of continuous phase



4 Results: equal viscosities, µd = 1 C156

10-5
10-4 10-3 10-2

10-1 100
101 102 103

104

We

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

C
a

-1

log
10
 R

e =
 7

1

2

3

4

5

6

0

8

-2-3-4-5-6-7-8

low surface
tension

high surface
tension

high inertial forces
low viscous forces

log 10
 Oh = 2.09

high viscous forces
low inertial forces

0.882

-0.316

-1.52

-2.73

log10 S = -1

0

1

2

3

4

-2

-3

(a) (b) (c) (d)

(e)

(f)

(g)

Figure 2: A phase chart of droplet deformation behaviour for µd = 1 .
The dimensionless groups and displayed times for each case are: (a) Re =
2.13 × 10−3 , S = 2.13 × 101 , t = 0.24, 0.48, 0.60 ; (b) Re = 1.05 × 100 ,
S = 5.13 × 102 , t = 0.30, 0.44, 0.60 ; (c) Re = 1.30 × 10−2 , S = 1.28 × 100 ,
t = 0.20, 0.56, 0.70 ; (d) Re = 6.59×10−1 , S = 3.97×100 , t = 0.24, 0.58, 0.70 ;
(e) Re = 1.30×100 , S = 5.66×10−3 , t = 0.24, 0.62, 0.80 ; (f) Re = 3.33×101 ,
S = 9.71× 10−1 , t = 0.24, 0.50, 0.64 ; (g) Re = 1.69× 102 , S = 9.94× 100 ,
t = 0.26, 0.40, 0.60 . In each image fluid flows from top to bottom.
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flow rates.

Figure 2e shows the results of a simulation conducted with a moderate
value of Re but low S. The low value of S implies that surface tension forces
have only a small effect on the deformation of this droplet. A characteristic
feature of this simulation is the forked tail that the droplet develops within
the contraction. This tail develops because the centreline velocity within the
contraction is higher than that near the walls of the contraction. This causes
the interface of the droplet near the centreline to move faster through the
contraction than the interface located at positions of larger r, resulting in
the observed ‘fork’. As surface tension effects are very weak here, the droplet
does not return to the form of a sphere after exiting the contraction.

Figure 2c shows a simulation conducted with a lower value of Re to that
shown in Figure 2e, but now with a moderate value of S. The higher surface
tension forces here act to smooth interface regions of high curvature. As a
result, the tail that the previous droplet developed within the contraction
is smaller, and after the droplet leaves the contraction, it assumes a less
elongated shape than observed previously. Figures 2d, 2a and 2b show that
as S is increased, the droplet shapes become smoother and fatter within the
contraction, and return to more spherical shapes after they exit. In Figure 2b
surface tension effects are so great that significant shape changes only occur
when the droplet is constrained by the contraction walls. Thus, within the
contraction the droplet forms a thick capsule having approximately the same
radius of the contraction, while beyond the contraction, it quickly reforms
back to its initial spherical state. The difference in Re between these five
cases (Figures 2a–e) appears to have little effect on the observed droplet
shapes, implying that below Re ≈ 1 the inertial effects are small.

Two higher Re cases are shown in Figure 2. Figure 2f shows a case
with a slightly lower value for S than in Figure 2c, but now with a substan-
tially higher Re. The larger inertial effects experienced in this case result
in a strong jet of fluid emerging from the contraction, and this jet drives
large recirculation zones that extend beyond the computational boundaries.
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As the recirculation zones extend beyond the computational domain, their
behaviour is not reliably predicted. However, tests using a variety of compu-
tational domain sizes show that the shape of these recirculation zones does
not significantly affect droplet deformation here, most probably because the
droplet does not enter these zones during the simulation.

The larger inertial effects present in Figure 2f compared with those in
Figure 2c mean that the droplet requires a longer time to accelerate at the
entrance to the contraction. However, once within the contraction the droplet
forms a filament of fluid whose leading tip moves at approximately the con-
traction centreline velocity, significantly faster than observed in the lower Re
cases. As the inertia of this filament is high, its shape remains substantially
intact after leaving the contraction. Note that the diameters of the filaments
formed within the contraction are similar in cases 2f and 2c.

A characteristic feature of Figure 2f is the bulging of the leading tip of
the droplet as it moves through the domain. This bulging is the result of
surface tension forces which increase the pressure inside the high curvature
region at the tip of the thread, in turn pulling this tip back towards the main
body of the droplet.

Figure 2g has a similar S value to Figure 2a, but a substantially higher Re
value. Although surface tension forces are strong in both cases, the higher
inertial forces present in Figure 2g mean that the droplet takes longer to ac-
celerate at the entrance to the contraction, and the leading tip of the droplet
moves some distance beyond the exit of the contraction before substantial ‘tip
bulging’ occurs. However, the width of the filament within the contraction
is similar in both cases.

5 Results: lower viscosity droplet, µd = 0.1

A second series of simulations was conducted with a smaller disperse
continuous phase viscosity ratio (µd = 0.1). Selected results from these
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Figure 3: A phase chart of droplet deformation behaviour for µd = 0.1 .
The dimensionless groups and displayed times for each case are: (a) Re =
2.13 × 10−3 , S = 2.13 × 101 , t = 0.22, 0.42, 0.50 ; (b) Re = 1.30 × 10−2 ,
S = 1.28× 100 , t = 0.18, 0.58, 0.70 ; (c) Re = 8.14× 10−3 , S = 8.06× 10−3 ,
t = 0.18, 0.46, 0.58 ; (d) Re = 1.30×100 , S = 5.66×10−3 , t = 0.22, 0.40, 0.66 ;
(e) Re = 2.08×101 , S = 9.54×10−3 , t = 0.28, 0.68, 0.82 ; (f) Re = 3.33×101 ,
S = 9.71× 10−1 , t = 0.34, 0.46, 0.80 ; (g) Re = 1.05× 100 , S = 5.13× 102 ,
t = 0.13, 0.40, 0.60 . In each image fluid flows from top to bottom.
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Figure 4: Images from the simulation of Figure 3a shown at indicated times.
Here Re = 2.13 × 10−3 , S = 2.13 × 101 and µd = 0.1 . In each image fluid
flows from top to bottom.

simulations are shown in Figure 3, along with a corresponding Ca verses We
phase chart.

Figure 3a shows images from a simulation conducted with a high level of
surface tension S, but low Re. A series of time steps from this simulation
are shown in Figure 4. Three interesting features of this simulation are: the
significant bulging of the leading tip as it moves through the contraction, the
growth of capillary waves along the filament when it is within the contraction,
and the shedding of droplets from the rear of the droplet as it exits the
contraction.

The formation of a ‘bulge’ at the leading tip of the droplet between times
0.12 and 0.24 in Figure 4, and at the receding tip of the same droplet between
times 0.38 and 0.44, is due to the same physical mechanism that produced
the tip bulging seen in Figure 2f. Surface tension forces increase the pressure
within the disperse phase behind the high curvature tip. This forces fluid
away from the tip and back towards the bulk of the droplet, in turn increasing



5 Results: lower viscosity droplet, µd = 0.1 C161

the radius of the tip and producing the bulge.

The behaviour of these tips has much in common with the behaviour of
the tip of a relaxing extended droplet, as studied by Powers et al. [7] and
Stone & Leal [10] for low inertia flows. Stone & Leal propose that the stability
of the bulge at the tip of a receding extended droplet (that is, whether the
tip will ‘pinch-off’ from the rest of the droplet or not) is determined by the
competition between two forces. One force is a drag force acting on the bulge
of the tip by the surrounding fluid. For Stone & Leal’s geometry where the
bulge is moving towards the bulk of the droplet in an otherwise quiescent
fluid, this force is directed away from the bulk of the droplet and tends to
promote ‘pinch-off’ of the tip from the rest of the droplet. Another force, due
to surface tension on the droplet side of the bulge, acts to pull the bulge back
towards the bulk of the droplet, thus suppressing pinch-off. If this pulling
force is less than the drag force, then a neck has time to form adjacent to
the bulge, eventually severing the tip from the remainder of the droplet and
producing a satellite droplet. Conversely, if the drag force is less than the
surface tension force, then there is insufficient time for a neck to form next
to the bulge and the tip will recede in a steady manner back along the length
of the filament.

This type of analysis, applied to the leading and rear tips of the droplet
shown in Figure 4, explains why the leading tip of the droplet is stable in
our example while the rear tip of the droplet sheds small droplets. At the
leading tip of the droplet, the velocity of the tip is higher than that of the
surrounding continuous phase. As a result, the drag force acting on the
leading bulge is directed towards the bulk of the droplet and acts to stabilise
this bulge. However, at the rear of the droplet the situation is reversed. Here
the continuous phase velocity is moving away from the tip of the droplet
(relative to the droplet tip) so that the drag force on the rear bulge is directed
away from the bulk of the droplet. This situation is similar to that examined
by Stone & Lea [10] and explains why small droplets are shed from the rear
of the filament in this case. Numerical simulations performed by Powers et
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al. [7, see Figure 7] suggest that the time between pinch-off for a droplet
having the dimensions of the filament shown in Figure 4 but in a quiescent
fluid would be around 0.14 non-dimensional time units. This appears to be
just a little longer than the time between when the rear of the droplet enters
the contraction and the first pinch-off occurs in our simulations. However,
this is consistent with the drag force being slightly higher in our geometry
than in Powers et al.’s otherwise quiescent fluid.

The simulations predict that the small satellite droplets shed from the
rear tip of the filament merge again with the bulk of the droplet as it exits
the contraction (see times 0.52 and 0.6 in Figure 4). The satellite droplets
approach the main droplet at the exit to the contraction as the centreline ve-
locity decelerates here. However, whether or not real droplets would coalesce
in this situation cannot be predicted by the vof method as the dynamics
of the thin film existing between the interfaces of the droplets cannot be re-
solved on the spatial scale of the computational mesh. Thus, the coalescence
of the satellite droplets observed in Figure 4 may or may not be physical.

Figure 4 also shows the development of capillary waves along the filament
surface when it is in the contraction, particularly behind the leading tip bulge.
The creeping flow linear stability analysis of Tomotika [11] suggests that the
fastest growing wavelength for capillary instabilities along a filament of this
size would be around 1.37, with a corresponding growth rate of 13.0 (that is,
it would take 0.177 non-dimensional time units for the amplitude of a distur-
bance to increase by an order of magnitude). This wavelength and growth
rate are consistent with the results of the figure, suggesting that capillary
waves are producing the radial oscillations observed in this simulation.

Figure 3b shows a simulation conducted with a smaller level of S, but still
with a low Re. In this case the leading bulge is smaller than in Figure 3a,
and no droplets are shed from the rear tip during the deformation. These
results are consistent with the analysis of Powers et al. [7] who predict a
pinch-off time for a filament of this size of around 1.86, which is significantly
larger than the time the filament spends in the contraction. Also, there is



5 Results: lower viscosity droplet, µd = 0.1 C163

less capillary wave growth along the extended filament in this example than
in Figure 3a. The linear stability analysis of Tomotika [11] gives a maximum
growth rate for capillary waves along a filament of this size of 0.941. This
growth rate is significantly slower than the growth rate calculated for the
example of Figure 3a (the growth rate scales with Ca−1), thus, the filament
does not exist within the contraction for enough time for interface oscillations
to develop.

Figure 3c shows a simulation where S has been decreased further while
Figure 3g shows a simulation where S is very high. Like the higher viscosity
simulation shown in Figure 2e, the surface tension forces in the simulation
shown in Figure 3c are small and a fork develops at the rear tip of the droplet.
The case shown in Figure 3g is very similar to that shown in Figure 2b — here
S is so large that deformation only occurs when the droplet is constrained
by the contraction walls.

The simulations shown in Figures 3d, e and f show the effect of increasing
inertia on droplet deformation. Similar to the results shown in Figures 2f
and g, as Re is increased, inertial forces cause the droplet to accelerate at
a slower rate when entering the contraction, and to ‘jet’ when exiting the
contraction.

The example of Figure 3d, and to a lesser extent the examples in Fig-
ures 3c and e, show the development of small wavelength instabilities along
the filament surface, especially within the lower half of the contraction. These
waves are particularly apparent in Figure 3d where they shorten and grow
radially as the filament decelerates and expands when leaving the contrac-
tion.

Linear stability results presented in Lee & Flumerfelt [6] for moderate Re
capillary wave growth suggests that for the example shown in Figure 3d,
a wavelength of around 1.11 has the largest possible growth rate. Clearly
this length is larger than the wavelengths observed along the filament in the
simulations, suggesting that the instabilities observed in the figure are not
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surface tension related. It is more likely that the source of these waves are
small wavelength instabilities that can occur at a discrete interface in the
absence of surface tension. Such instabilities are similar in nature to Kelvin–
Helmholtz instabilities, and have been described analytically by Hooper &
Boyd [5].

6 Conclusions

The deformation of droplets as they pass through an axisymmetric micro-
fluidic contraction has been simulated over a range of Re and S, and for two
disperse continuous phase viscosity ratios. A variety of shapes were observed
during the simulations, ranging from thick slugs through to thin filaments.
In some of the lower viscosity disperse phase simulations instabilities grew
along the surface of the extended droplets. In one particular case this lead to
droplet breakup within the contraction. Future work will extend the analysis
to different viscosity ratios and to non-Newtonian fluids.

Acknowledgment: This research was supported by the Australian Re-
search Council Linkage Grants Scheme.

References

[1] S. L. Anna, N. Bontoux, and H. A. Stone. Formation of dispersions
using ‘flow focusing’ in microchannels. Applied Physics Letters,
82(3):364–366, Jan 20 2002. C152, C155

[2] M. R. Davidson. VOF prediction of drop formation of shear-thinning
and yield stress fluids. In 5th International Conference on Multiphase
Flow, ICMF’04, Yokohama, Japan, May 30–June 4 2004. Paper No.
501. C154



References C165

[3] J. Eggers. Nonlinear dynamics and breakup of free-surface flows.
Reviews of Modern Physics, 69(3):865–929, Jul 1997. C152

[4] C. D. Han and K. Funatsu. An experimental study of droplet
deformation and breakup in pressure-driven flows through converging
and uniform channels. Journal of Rheology, 22(2):113–133, 1978. C152

[5] A. P. Hooper and W. G. C. Boyd. Shear-flow instability at the
interface between two viscous fluids. Journal of Fluid Mechanics,
128:507–528, 1983. C164

[6] W.-K. Lee and R. W. Flumerfelt. Instability of stationary and
uniformly moving cylindrical fluid bodies — i. International Journal of
Multiphase Flow, 7:363–383, 1981. C163

[7] T. R. Powers, D. Zhang, R. E. Goldstein, and H. A. Stone.
Propagation of a topological transition: The rayleigh instability.
Physics of Fluids, 10(5):1052–1057, 1998. C161, C162

[8] M. Rudman. A volume-tracking method for incompressible multifluid
flows with large density variations. International Journal for
Numerical Methods in Fluids, 28:357–378, 1998. C154

[9] H. A. Stone. Dynamics of drop deformation and breakup in viscous
fluids. Annual Review of Fluid Mechanics, 26:65–102, 1994. C152

[10] H. A. Stone and L. G. Leal. Relaxation and breakup of an initially
extended drop in an otherwise quiescent fluid. Journal of Fluid
Mechanics, 198:399–427, 1989. C161

[11] S. Tomotika. On the instability of a cylindrical thread of a viscous
liquid surrounded by another viscous fluid. Proceedings of the Royal
Society of London, Series A, 150(870):322–337, June 1935. C162, C163

[12] D. S. Whyte, J. Cooper-White, M. Davidson, A. Lunqvist, and
P. Schaerringer. Deformation of a droplet passing through a



References C166

contraction. In Proceedings of FEDSM2002: 2002 ASME Fluids
Engineering Division Summer Meeting, Montreal, Quebec, Canada,
July 14–18 2002. ASME. C152, C154

[13] D. L. Youngs. Time-dependent multimaterial flow with large fluid
distortion. In K. Morton and M. Baines, editors, Numerical Methods
for Fluid Dynamics, pages 273–285. Academic Press, 1982. C154


	Introduction
	Problem description
	Simulation method
	Results: equal viscosities, [d]=1
	Results: lower viscosity droplet, [d]=0.1
	Conclusions
	References

