
ANZIAM J. 46 (E) ppC290–C303, 2005 C290

Parallel implementation of a monotone domain
decomposition algorithm for nonlinear

reaction-diffusion problems

M. P. Hardy ∗ I. Boglaev†

(received 21 October 2004, revised 23 March 2005)

Abstract

Recently, a monotone iterative domain decomposition algorithm
has been proposed for the numerical solution of nonlinear singularly
perturbed reaction-diffusion problems. This paper describes a paral-
lel implementation of the algorithm on a distributed memory cluster.
Interprocess communication is effected by means of the mpi message
passing library. For various domain decompositions, we give the con-
vergence iteration count and execution time on up to 16 processors.
The parallel scale-up of the algorithm improves as the number of mesh
points is increased.

∗Mathematical Sciences Institute, Australian National University, Canberra,
Australia. mailto:hardy@maths.anu.edu.au

†Institute of Fundamental Sciences, Massey University, Palmerston North, New
Zealand mailto:i.boglaev@massey.ac.nz

See http://anziamj.austms.org.au/V46/CTAC2004/Hard for this article, c© Aus-
tral. Mathematical Soc. 2005. Published April 28, 2005. ISSN 1446-8735

mailto:hardy@maths.anu.edu.au
mailto:i.boglaev@massey.ac.nz
http://anziamj.austms.org.au/V46/CTAC2004/Hard

ANZIAM J. 46 (E) ppC290–C303, 2005 C291

Contents

1 Introduction C291

2 Box-domain decomposition algorithm C292

3 Parallel implementation C295

4 Numerical experiments C298

5 Conclusion C302

References C302

1 Introduction

We are interested in the nonlinear singularly perturbed reaction-diffusion
problem of elliptic type

−µ2(uxx + uyy) + f(x, y, u) = 0 , (x, y) ∈ ω ,

ω = ωx × ωy = (0, 1)× (0, 1) , u = g on ∂ω ,
(1)

where µ � 1 is the perturbation parameter and ∂ω is the boundary of ω. We
also assume that c∗ ≥ fu ≥ c∗ , (x, y, u) ∈ ω̄×R , where c∗ and c∗ are positive
constants and fu ≡ ∂f/∂u . The solution is characterised by boundary layers
of width O(µ| ln µ|).

Discrete approximation of (1) leads to an algebraic system of nonlinear
difference equations whose solution converges with mesh refinement to that
of the continuous problem. The algebraic system is typically solved by New-
ton’s method, or some other iterative technique. One drawback of Newton’s
method is its sensitivity to the initial guess. In contrast, the method of upper
and lower solutions generates a monotonically convergent sequence from any

1 Introduction C292

one of a wide class of initial iterates [4]. Indeed, as shown in [1], the initial
iterate may be constructed using only the boundary conditions and a lower
bound on fu. No knowledge of the solution is necessary to implement the
algorithm.

The advent of the Beowulf cluster has brought high-performance comput-
ing within reach of academe and thus fostered renewed interest in alternating
Schwarz-type domain decomposition iterative algorithms. In [2] the domain
is partitioned into nonoverlapping boxes and the monotone iterative method
is applied on each subdomain. At each horizontal and vertical boundary,
interfacial subdomains are introduced and corresponding linear problems
generate boundary Dirichlet data for the nonoverlapping subdomains. As
shown theoretically and confirmed by serial computations [2], the algorithm
retains global monotonicity under such decomposition. This paper describes
a parallel implementation of the algorithm from [2].

In Section 2 we define the piecewise uniform mesh from [3], on which
the classical central difference scheme converges µ-uniformly to the solution
of (1). We then describe the domain decomposition algorithm from [2]. In
Section 3 we discuss our parallel implementation of the algorithm. Section 4
presents numerical experiments for a model problem. For various domain
decompositions we give the convergence iteration counts and execution times
on up to 16 processors. Observing that domain decomposition enhances
the algorithm’s serial execution, we define parallel speedup in terms of the
optimal decomposition for a given number of processors. The parallel scale-
up of the algorithm improves as the mesh size is increased.

2 Box-domain decomposition algorithm

We provide here only a brief description of the nonlinear finite difference
scheme for (1) and the monotone domain decomposition algorithm by which
it is solved. Further details can be found in [2].

2 Box-domain decomposition algorithm C293

Let Nx and Ny be the number of mesh subintervals in the respective x-
and y- directions. Boundary layer thicknesses σx and σy are chosen as

σx = min
{
0.25, µc−1/2

∗ ln Nx

}
, σy = min

{
0.25, µc−1/2

∗ ln Ny

}
,

and mesh spacings

hxµ =
4σx

Nx

, hx =
2(1− 2σx)

Nx

, hyµ =
4σy

Ny

, hy =
2(1− 2σy)

Ny

.

The x-mesh ω̄hx is constructed thus: in each of the subintervals [0, σx] and
[1−σx, 1] the fine mesh spacing is hxµ whereas in the interval [σx, 1−σx] the
coarse mesh spacing is hx. The y-mesh ω̄hy is constructed analogously. The
mesh for ω̄ is then defined as the tensor product ω̄h = ω̄hx × ω̄hy .

Given a mesh function U on ω̄h, let D2
xU(P) and D2

yU(P) be the respec-
tive central difference approximations to the x- and y- second derivatives at
point P ∈ ωh . Define also the linear operator Lh ≡ −µ2(D2

x + D2
y) . For

discrete approximation of (1) we use the classical central difference scheme

LhU + f(P, U) = 0 , P ∈ ωh , U = g on ∂ωh . (2)

On the mesh ω̄h this scheme converges µ-uniformly to the solution u of (1).
That is, there exists a constant C, independent of µ and N , such that

max
P∈ω̄h

|U(P)− u(P)| ≤ C
(
N−1 ln N

)2
, N = min{Nx, Ny} .

To solve the nonlinear difference scheme (2), we employ the box-domain
decomposition algorithm from [2]. Consider a decomposition of ω into M×L
nonoverlapping main subdomains ωm,l, m = 1, . . . ,M , l = 1, . . . , L :

ωm,l = (xm−1, xm)× (yl−1, yl) , x0 = 0 , xM = 1 , y0 = 0 , yL = 1 .

Then introduce vertical interfacial subdomains θm, m = 1, . . . ,M − 1 :

θm = (xb
m, xe

m)× ωy , xb
m < xm < xe

m , θm−1 ∩ θm = ∅ ,

2 Box-domain decomposition algorithm C294

and horizontal interfacial subdomains ϑl, l = 1, . . . , L− 1 :

ϑl = ωx × (yb
l , y

e
l) , yb

l < yl < ye
l , ϑl−1 ∩ ϑl = ∅ .

With the global mesh ω̄h = ω̄hx × ω̄hy , we also require that

{xb,e
m , xm} ⊂ ωhx , m = 1, . . . ,M − 1 , {yb,e

l , yl} ⊂ ωhy , l = 1, . . . , L− 1 .

1. On the whole mesh ω̄h choose an initial mesh function V (0) satisfying
the boundary conditions, V (0)(P) = g(P) , P ∈ ∂ωh .

Given a global iterate V (n), Steps 2 through 5 below generate V (n+1).

2. For each main subdomain ω̄h
m,l, solve the linear difference problem

(Lh + c∗)Z
(n+1)
m,l = −

[
LhV (n) + f(P, V (n))

]
, P ∈ ωh

m,l = ωm,l ∩ ωh ,

with Z
(n+1)
m,l (∂ωh

m,l) = 0 .

3. For each vertical interfacial subdomain solve the linear problem

(Lh + c∗)Z(n+1)
m = −

[
LhV (n) + f(P, V (n))

]
, P ∈ θh

m = θm ∩ ωh ,

with Z
(n+1)
m (∂θh

m) defined by the mesh functions computed in Step 2.

4. For each horizontal interfacial subdomain solve the linear problem

(Lh + c∗)Z̃
(n+1)
l = −

[
LhV (n) + f(P, V (n))

]
, P ∈ ϑh

l = ϑl ∩ ωh ,

with Z̃
(n+1)
l (∂ϑh

l) defined by the mesh functions computed in Steps 2
and 3.

5. Piece together the mesh functions from Steps 2 through 4:

V (n+1)(P) =

V (n)(P) + Z̃

(n+1)
l (P) , P ∈ ϑ̄h

l ,

V (n)(P) + Z
(n+1)
m (P), P ∈ θ̄h

m\
{⋃L−1

l=1 ϑ̄h
l

}
,

V (n)(P) + Z
(n+1)
m,l (P) , P ∈ ω̄h

m,l\
{⋃M−1

m=1 θ̄h
m

⋃L−1
l=1 ϑ̄h

l

}
.

6. If the solution is not converged then increment n and go to Step 2.

2 Box-domain decomposition algorithm C295

3 Parallel implementation

We have implemented the box-domain decomposition algorithm on Helix—
the distributed memory Linux cluster at Massey University, New Zealand.
This comprises 65 nodes, each equipped with two Athlon MP-2100 proces-
sors, 1 GB of ram and two gigabit network interface cards. The nodes are
arranged on seven 24 port switches such that any two nodes are connected
via at most three switches. Inter-processor communication is via the mpi
library specification.

Because the mesh is only piecewise uniform, the linear systems may be
nonsymmetric. Therefore, we solve all linear systems with the restarted
gmres(m) algorithm from [5] and the point Jacobi preconditioner. The
present work concerns the first level of parallelisation. That is, each sub-
domain is wholly assigned to a processor and we do not parallelise gmres.
Hence, we only consider balanced domain decompositions — those in which
the interfacial subdomains overlap the boundary layer. Although the analysis
and serial computations of [2] have shown that unbalanced domain decom-
positions require fewer iterations for convergence, this advantage would be
at least partially offset by the extra inter-processor communication required.

In a balanced domain decomposition, the main subdomains share the
mesh points equally. However, the respective workloads of the correspond-
ing linear problems vary with mesh spacing. In order to balance the load
of Step 2, we first classify the main subdomains by mesh spacing, and then
divide each class equally among the processors. Suppose we have an M × L
decomposition and P processors. Assuming that M ≥ 4 and L ≥ 4 , there
are ML/16 main subdomains in each of the four corners [0, σx] × [0, σy],
[1−σx, 1]× [0, σy], [0, σx]× [1−σy, 1] and [1−σx, 1]× [1−σy, 1]. Thus, there
are ML/4 main subdomains in which the respective x- and y- mesh spacings
are hxµ and hyµ. Let us denote this class by F-F (fine-fine). Next, in each of
the regions [σx, 1− σx]× [0, σy], [σx, 1− σx]× [1− σy, 1], [0, σx]× [σy, 1− σy]
and [1− σx, 1]× [σy, 1− σy], there are ML/8 main subdomains in which the

3 Parallel implementation C296

respective x- and y- mesh spacings are either hxµ and hy or hx and hyµ. In
the numerical experiments of the next section we take Nx = Ny and hence
these ML/2 subdomains are equivalent. We label this class F-C (fine-coarse).
Finally, the region [σx, 1 − σx] × [σy, 1 − σy] is covered by ML/4 main sub-
domains in which the respective x- and y- mesh spacings are hx and hy.
We denote this class C-C (coarse-coarse). Within a given class, each sub-
domain incurs the same computational cost. Comparing across classes, the
cost per subdomain is greatest for the class F-F and least for the class C-C.
If P divides ML/4, each processor is assigned ML/(4P) main subdomains
of class F-F, ML/(2P) main subdomains of class F-C and ML/(4P) main
subdomains of class C-C. If P does not divide ML/4, then load balancing
requires second level parallelisation and we do not implement the M × L
decomposition on P processors. Similar considerations apply to decomposi-
tions in which M or L is equal to one, except that there are at most two
classes of main subdomain. The vertical interfacial subdomains are shared
as equally as possible among the P processors {0, 1, . . . , P − 1}: θ̄h

m 7→
mod (m − 1, P) . The assignment of horizontal interfacial subdomains is
similar: ϑ̄h

l 7→ mod (l − 1, P) .

Consider the distribution of an 8 × 4 decomposition on four processors,
shown schematically in Figure 1. During Step 2 of the algorithm, each proces-
sor solves over its assigned main subdomains and this workload is balanced.
During Step 3, each processor solves over its assigned vertical interfacial sub-
domains. In contrast to the other processors which each have two, Processor 3
has only one vertical interfacial subdomain and so is idle for approximately
half of Step 3. In Step 4, Processors 0,1,2 each solve over their assigned
horizontal interfacial subdomain while Processor 3 remains idle. This idle
time results in a loss of computational efficiency.

Another overhead of any parallel implementation is that of inter-processor
communication. Before each of the algorithm’s three steps, data must be
transferred between subdomains. In Figure 1 we have indicated the data
which must be transferred from Processor 0 to Processor 1 before the latter

3 Parallel implementation C297

�

���

��� ���

�

� ��� ��� ��� �

� � � 	 � � �

�

�

�

��

�

��

�

���
�

���
�

���
�

����
	

��

�

��

	

���
�

���
�

�����
�

�����
�

�����
�

�����
	

����
�

����
�

���
�

���
	

�����
�

�����
�

�����
�

�����
	

����
�

����
	

��

�

��

�

���
�

���
�

���
�

����
	

��

�

��

	

�

�

�

� � �

Figure 1: A schematic of an 8 × 4 decomposition and the assignment of
the subdomains to four processors {0, 1, 2, 3}. Main subdomains are shown
in blue, vertical interfacial subdomains are shown in green and horizontal
interfacial subdomains are shown in red. The mesh spacing classes of the
main subdomains are also indicated. The six blocks of data a–f must be
transferred from Processor 0 to Processor 1 before Step 2 of the algorithm.

3 Parallel implementation C298

can solve over its main subdomains. From the left-most vertical interfa-
cial subdomain on Processor 0, we must transfer the three blocks of data a,
b and c to main subdomains on Processor 1. From the horizontal interfa-
cial subdomain on Processor 0, we must transfer the three blocks of data d,
e and f to Processor 1. In order to minimise the inter-processor commu-
nication, the data blocks a–f are buffered and sent as one message. This
saving in communication comes at the relatively small (local) cost of com-
posing the message on Processor 0 and decomposing the received message on
Processor 1.

4 Numerical experiments

We now apply the algorithm to the reaction-diffusion problem

− µ2(uxx + uyy) +
u− 4

5− u
= 0 , (x, y) ∈ ω ,

ω = ωx × ωy = (0, 1)× (0, 1) , u(x, y) = 1 , (x, y) ∈ ∂ω .

The solution to the reduced problem (µ = 0) is ur = 4 . For µ � 1 the
problem is singularly perturbed and the solution increases sharply from u = 1
on ∂ω to u = 4 on the interior.

We solve the nonlinear scheme (2) by the domain decomposition algorithm
of Section 2. We fix the perturbation parameter µ = 10−3 and take Nx =
Ny = N with N = 256 , 512 or 1024 . Given P processors, where P ∈
{1, 2, 4, 8, 16} , we are interested in the execution time of the algorithm under
various domain decompositions. We suppose that {M, L} ⊂ {1, 4, 8, 16, 32}
and that the interfacial subdomains are either all maximal or all minimal. We
initiate the algorithm with the mesh function V (0)(ωh) = 0 , V (0)(∂ωh) = 1 .
As shown in [2], this guarantees monotonic convergence to the solution of (2).
Our convergence criterion is ‖V (n) − V (n−1)‖ω̄h ≤ 10−5 .

4 Numerical experiments C299

N 256 512 1024
L\M 1 4 8 16 32 1 4 8 16 32 1 4 8 16 32

1 21
26
21

40
21

41
22

49
24

21
36
21

62
21

62
21

72
23

21
59
21

102
21

102
21

113
23

4 26
21

26
21

40
21

41
22

49
24

36
21

36
21

62
21

62
21

72
23

59
21

59
21

102
21

102
21

113
23

8 40
21

40
21

41
21

43
22

55
24

62
21

62
21

72
21

72
21

86
23

102
21

102
21

126
21

126
21

143
23

16 41
22

41
22

43
22

44
22

57
24

62
21

62
21

72
21

73
21

88
23

102
21

102
21

126
21

127
21

144
22

32 49
24

49
24

55
24

57
24

67
24

72
23

72
23

86
23

88
23

103
23

113
23

113
23

143
23

144
22

163
23

Table 1: The convergence iteration count of the algorithm for various M×L
decompositions. Results corresponding to minimal and maximal interfacial
subdomains are given above and below the line, respectively.

Table 1 shows convergence iteration counts for various mesh sizes N and
M×L decompositions. For each N , the iteration count of the undecomposed
algorithm (M = 1 , L = 1) is 21 and this increases under decomposition. The
convergence improves as the interfacial subdomains are enlarged.

In Table 2 we list the execution time of the M × L algorithm on P pro-
cessors. We first discuss the results for P = 1 (the serial code) and N = 256 ,
corresponding to the major cell in the top-left corner of Table 2. The unde-
composed algorithm executes in 34 seconds. Each of the 21 iterations entails
the solution of a linear problem with 2552 unknowns. Consider now the 4×4
decomposition with minimal interfacial subdomains. Each global iteration
entails the solution of 22 linear problems, 16 of which have 632 unknowns
(Step 2 of the algorithm) and 6 of which have 255 unknowns (Steps 3 and 4).
Now, the gmres operation count increases superlinearly with problem size.
Therefore, the above-mentioned 22 linear problems are solved more quickly
than the undecomposed algorithm’s linear problem. Indeed, the 26 global
iterations execute in just 15 seconds.

We now discuss the communication overhead of our implementation. Con-
sider the problem with N = 256 and the 32 × 32, minimal interfacial sub-

4 Numerical experiments C300

N 256 512 1024
P L\M 1 4 8 16 32 1 4 8 16 32 1 4 8 16 32

1 34
32
46

29
33

25
28

15
17 249

356
377

497
394

400
333

252
215 2037

4014
3116

5665
3281

5394
3231

4798
2956

4 32
46

15
51

14
42

7
38

7
34

356
376

233
458

239
430

196
393

120
324

4014
3109

3069
3964

4895
4059

4174
3826

2484
3481

1 8 29
33

14
42

9
34

8
33

9
28

497
394

240
432

272
434

179
387

99
324

5642
3272

4856
4058

5482
3944

3674
3565

3188
3493

16 24
28

7
38

8
32

7
30

8
26

400
332

196
393

179
385

91
343

91
299

5348
3245

4148
3849

3674
3580

3330
3439

2255
3193

32 15
17

7
35

8
28

8
26

7
18

251
212

119
326

97
325

90
300

83
223

4789
2960

2469
3490

3182
3509

2254
3218

1144
2949

1 ∗ 22
34

17
20

14
16

9
10 ∗ 220

268
307
259

237
207

137
117 ∗ 2553

2241
3597
2137

3388
2043

3029
1876

4 22
35

9
37

8
29

4
26

5
25

220
268

139
346

129
304

102
272

63
227

2554
2234

1951
3037

3091
2893

2516
2682

1354
2440

2 8 17
20

8
29

5
21

5
20

6
18

307
259

129
304

141
286

94
251

52
205

3603
2118

3092
2902

3324
2619

2003
2302

1659
2233

16 14
16

4
26

5
20

5
18

6
16

234
206

102
271

93
250

48
216

48
180

3384
2042

2514
2689

1991
2320

1729
2177

1181
2023

32 8
10

4
25

6
18

6
16

8
14

135
118

64
227

51
206

48
183

46
128

3026
1881

1340
2434

1663
2243

1177
2040

593
1869

1 ∗ ∗ 9
11

7
9

5
5 ∗ ∗ 187

148
141
116

76
64 ∗ ∗ 1965

1176
1797
1066

1580
962

4 ∗ 5
22

5
17

3
16

3
15 ∗ 80

186
71
169

55
145

34
121 ∗ 988

1621
1570
1605

1293
1416

698
1293

4 8 9
11

5
17

3
13

3
12

3
11

187
148

71
169

75
164

49
138

27
117

1959
1175

1565
1591

1688
1495

1017
1278

847
1257

16 8
9

3
15

3
12

3
10

4
9

141
114

58
146

51
139

26
114

26
95

1790
1059

1289
1417

1011
1280

879
1147

598
1058

32 5
5

3
15

3
11

4
9

5
8

76
62

34
122

26
118

25
95

24
66

1578
956

713
1293

843
1251

597
1062

305
967

1 ∗ ∗ ∗ 4
5

3
3 ∗ ∗ ∗ 77

61
42
33 ∗ ∗ ∗ 1016

542
874
478

4 ∗ ∗ 3
14

2
13

2
13 ∗ ∗ 36

127
31
112

19
102 ∗ ∗ 779

1140
658
1020

371
970

8 8 ∗ 3
14

2
8

2
7

2
6 ∗ 37

127
38
93

26
77

15
64 ∗ 781

1131
847
833

524
693

431
658

16 4
5

2
13

2
7

2
6

3
5

76
60

31
112

27
77

14
61

14
51

1017
543

687
1017

525
694

449
607

306
545

32 3
3

2
14

2
6

2
5

3
4

42
33

20
102

15
64

14
51

14
35

875
478

388
975

442
663

316
548

165
484

1 ∗ ∗ ∗ ∗ 3
3 ∗ ∗ ∗ ∗ 25

18 ∗ ∗ ∗ ∗ 559
286

4 ∗ ∗ ∗ 2
13

2
13 ∗ ∗ ∗ 17

104
12
100 ∗ ∗ ∗ 380

841
220
838

16 8 ∗ ∗ 3
8

3
6

6
6 ∗ ∗ 21

99
15
69

10
61 ∗ ∗ 490

771
277
556

226
534

16 ∗ 2
13

3
6

2
4

3
4 ∗ 17

104
15
69

9
41

10
32 ∗ 378

849
276
551

234
394

160
332

32 3
3

3
13

3
6

3
4

3
4

25
18

12
100

10
61

10
32

10
20

574
287

221
843

233
530

164
344

88
288

Table 2: The execution time, rounded up to the nearest second, of the algorithm on an
M ×L decomposition with P processors. Results corresponding to minimal and maximal
interfacial subdomains are given above and below the line, respectively. A ∗ indicates that
the computational load of Step 2 cannot be balanced at the first level of parallelisation.

4 Numerical experiments C301

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

P
ar

al
le

l S
pe

ed
up

 (T
(N

,1
) /

 T
(N

,P
))

Number of Processors (P)

N = 256
N = 512
N = 1024
Ideal

Figure 2: The parallel speedup for three mesh sizes N .

domain decomposition. With one processor, the (serial) code executes in
6.89 seconds. With two processors, the linear algebra of each step is shared
equally but data must be transferred between the two processors before each
step. In fact, each global iteration entails the inter-processor transfer of 4928
blocks of data. These blocks are buffered and sent as 6 mpi communications.
This cost of composing and sending the messages more than offsets the re-
duced computational workload per processor. Thus, on two processors the
algorithm executes in 7.60 seconds, and the best decomposition is that of
4× 32, minimal interfacial subdomains.

As the global problem size increases to N = 512 and N = 1024 , the
linear algebra becomes increasingly significant and the communication over-
head reduces correspondingly. Thus, for each decomposition we observe a
reduction in execution time as the number of dedicated processors increases.

Given the serial performance of the algorithm, we quantify the parallel

4 Numerical experiments C302

speedup of our implementation. For a given mesh size N and number of
processors P , let T (N, P) be the minimum execution time over all domain
decompositions. In Table 2, T (N, P) is the smallest time in the major cell
corresponding to N and P . We define the parallel speedup of the algorithm
by the ratio T (N, 1)/T (N, P). This is plotted in Figure 2 together with the
ideal speedup. With N = 256 , the parallel speedup is greatest for P = 8 ;
with P = 16 the extra capacity for computation is negated by the necessary
communication. However, as N increases to 512 and 1024 the linear algebra
becomes increasingly significant and the communication overhead is justified.

5 Conclusion

We have considered the nonlinear reaction-diffusion problem and described a
parallel implementation of the box-domain decomposition algorithm from [2].
Between any two processors, the necessary inter-subdomain transfers are
buffered and sent as one mpi message. The parallel scale-up of the imple-
mentation improves with increasing N . On a 1024× 1024 mesh, the optimal
decomposition for any number of processors is the 32×32, minimal interfacial
subdomain decomposition. On 16 processors we observed a parallel speedup
of 13.04 which translates to a computational efficiency of 81.5%.

References

[1] I. Boglaev. On monotone iterative methods for a nonlinear singularly
perturbed reaction-diffusion problem. J. Comput. Appl. Math.,
162:445–466, 2004. http://dx.doi.org/10.1016/j.cam.2004.02.010
C292

[2] I. Boglaev and M. P. Hardy. Monotone finite difference domain
decomposition algorithms and applications to nonlinear singularly

http://dx.doi.org/10.1016/j.cam.2004.02.010

References C303

perturbed reaction-diffusion problems. Adv. Difference Eqns., (in press).
http://www.hindawi.com/journals/ade/forthcoming/

S1687183905409048.html C292, C293, C295, C298, C302

[3] J. J. H. Miller, E. O’Riordan, and G. I. Shishkin. Fitted numerical
methods for singular perturbation problems. World Scientific, Singapore,
1996. C292

[4] C. Pao. Monotone iterative methods for finite difference system of
reaction-diffusion equations. Numer. Math., 46(4):571–586, 1985.
http://dx.doi.org/10.1007/BF01389659 C292

[5] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual
method for solving nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput., 7:856–869, 1986.
http://locus.siam.org/SISC/volume-07/art_0907058.html C295

http://www.hindawi.com/journals/ade/forthcoming/S1687183905409048.html
http://www.hindawi.com/journals/ade/forthcoming/S1687183905409048.html
http://dx.doi.org/10.1007/BF01389659
http://locus.siam.org/SISC/volume-07/art_0907058.html

	Introduction
	Box-domain decomposition algorithm
	Parallel implementation
	Numerical experiments
	Conclusion
	References

