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Prediction of chain length effects in
elongational flows of dilute polymer solutions

by successive fine graining
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Abstract

A new computational tool for predicting the rheological properties
of a dilute solution of polymers in θ-conditions is presented. Within
this approach, the polymer is modelled as a bead spring chain with
finitely extensible springs and fluctuating hydrodynamic interactions
incorporated. The novelty of the method lies in obtaining predictions
for a very large Kuhn step chain by extrapolating results of a series
of bead-springs representations to the bead-rod limit. This provides
the computational advantage of using smaller number of modes in a
coarse grained description and better accuracy in the extrapolated
result. The effect of chain length in the unraveling dynamics of a
polymer in elongational flow is examined using this approach.

∗Department of Chemical Engineering, Monash University, Melbourne, Victoria 3800,
Australia. mailto:Ravi.Jagadeeshan@eng.monash.edu.au

See http://anziamj.austms.org.au/V46/CTAC2004/Sunt for this article, c© Aus-
tral. Mathematical Soc. 2005. Published May 3, 2005. ISSN 1446-8735

mailto:Ravi.Jagadeeshan@eng.monash.edu.au
http://anziamj.austms.org.au/V46/CTAC2004/Sunt


ANZIAM J. 46 (E) ppC320–C335, 2005 C321

Contents

1 Introduction C321

2 Bead-spring chain model C323

3 Method of successive fine graining C325
3.1 Model parameters for a given N . . . . . . . . . . . . . . . C325
3.2 Extrapolation of results . . . . . . . . . . . . . . . . . . . . C327

4 Successive fine graining in elongational flow: Results C328

5 Conclusion C332

References C333

1 Introduction

Many of the transport properties of dilute solutions of long chain polymer
molecules are of industrial interest. Chief among them are rheological prop-
erties such as the shear and elongational viscosities. For instance, unlike a
dilute suspension of rigid particles, the elongational (or extensional) viscosity
of a solution of long and flexible molecules is orders of magnitude greater than
that of its Newtonian solvent. Equilibrium and near equilibrium (or linear
viscoelastic) properties of polymer solutions have been studied for long us-
ing simple coarse grained physical models for the polymer molecule [13, 16].
While these fundamental models, such as the bead-spring chain model, cur-
rently employed are still the same, the regimes of application, namely strong
flows, makes it difficult to obtain closed form analytical approximations. A
commonly employed tool to overcome this difficulty is to use a Brownian
Dynamics simulation (bds) to numerically evaluate the consequences of the
model under various flows. In this paper we present a computational strategy,
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in the context of bds, which makes it easier to handle very large molecu-
lar weight polymers, and employ it to study the consequences of increasing
polymer chain length in elongational flow.

The characteristic physical feature of a polymer molecule is its mechanical
flexibility over several length scales beginning at distances of a few monomer
units. This is commonly modelled as a chain of Nk rods which freely rotates
about its joints. Each joint consists of a spherical bead representing the hy-
drodynamic drag felt by the rods in the solvent media. A typical polymer
of a few million molecular weight would be modelled with a few thousand
units in this bead-rod framework [1]. Due to the collisions of the surrounding
solvent molecules, the polymer constantly changes its configuration and the
movement of one bead influences that of the other beads by hydrodynamic
interactions (hi) mediated through the solvent. While some studies neglect
hi in the model to keep it simple and obtain certain gross and limiting be-
haviours [3], it is necessary to incorporate hi to explain the molecular weight
scaling of dynamic properties at equilibrium and in flow. From a computa-
tional view point this translates to the computational time scaling as N4.5

k .
This makes it currently difficult to simulate large molecular weight polymers
with a bead rod model.

An approximation frequently employed to overcome this computational
difficulty is to perform a coarse gaining in which segments of rods are re-
placed by springs which mimic the entropic resistance of the segments to
stretching [1, 2]. The simplest of such models is the dumbbell model in
which the whole polymer is replaced by a single spring and two beads. How-
ever, this simplification does not capture the flow induced dynamics of the
polymer arising due to its flexibility. Often a chain of N beads connected by
N − 1 springs is used. This considerably reduces computational time with
the number of beads reduced from a few thousands in the bead-rod model
to few tens in the bead-spring model.

One of the main concerns of this paper is addressing the problem of how
to systematically increase the number of springs in the chain. We show
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that by accumulating data in the region of small N , which can be easily
computed, a suitable extrapolation can be carried out to obtain the limiting
behaviour as N → Nk, thereby avoiding computations with a large Nk bead-
rod model. The procedure is developed in the context of the unraveling of the
polymer molecule under extensional flow from a coiled state to a stretched
state. Using this procedure we examine the effect of increasing Nk and its
limiting behaviour as Nk → ∞ . The model, governing equations, and the
bds scheme are outlined in Section 2. The method of successive fine graining
is presented in Section 3 and the results of the effect of increasing Nk on the
polymer conformations in elongational flow is discussed in Section 4

2 Bead-spring chain model

The dilute solution of polymer molecules is modelled as an ensemble of non-
interacting bead-spring chains, each of which hasN beads. With ψ(r∗1, . . . , r

∗
N)

being the configurational distribution function of the bead positions r∗µ, the
starting point in any statistical theory of bead-spring chains is given by the
“diffusion” equation or Fokker–Planck equation for the evolution of ψ [1, 2, 9]:

∂ψ

∂t∗
=

N∑
µ,ν=1

∂

∂r∗µ
· Γµν(h

∗) · ∂ψ
∂r∗ν

−
N∑

µ=1

∂

∂r∗µ
·

[
κ∗ · r∗µ +

N∑
ν=1

Γµν(h
∗) · Fs

ν(b)

]
ψ , (1)

Here, the lengths have been scaled by lH ≡
√
kT/H , time by λH ≡ ζ/4H ,

and forces by
√
HkT , where H is the linear spring constant, k is Boltzmann’s

constant, T is the temperature and ζ is the Stokes friction (drag) coefficient
associated with the spherical bead of radius a. The hi parameter

h∗ ≡ a√
π lH

. (2)
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In Equation (1), κ∗ is a time-dependent, homogeneous, velocity gradient ten-
sor of the surrounding fluid motion, and Γµν is the hydrodynamic interaction
tensor, representing the effect of the motion of a bead µ on another bead ν
through the disturbances carried by the surrounding fluid,

Γµν = δµν δ + Ωµν . (3)

where, δ and δµν represent a unit tensor and a Kronecker delta, respectively.
The tensor Ωµν is a function of the bead separation, Ωµν = Ω(r∗µν) , for
which we employ the Rotne–Prager–Yamakawa regularisation of the diffusion
tensor [12, 6],

Ω(r∗) =

[
Ω1 δ + Ω2

r∗ r∗

r∗2

]
, (4)

where, for r∗ ≥ 2
√
πh∗ ,

Ω1 =
3
√
π

4

h∗

r∗

(
1 +

2π

3

h∗2

r∗2

)
, Ω2 =

3
√
π

4

h∗

r∗

(
1− 2π

h∗2

r∗2

)
, (5)

and for 0 < r∗ ≤ 2
√
πh∗ ,

Ω1 = 1− 9

32

r∗

h∗
√
π
, Ω2 =

3

32

r∗

h∗
√
π
. (6)

Continuing with Equation (1), Fs
ν is the entropic spring force on bead ν due

to adjacent beads, Fs
ν = Fc(Q∗

ν) − Fc(Q∗
ν−1) , where Fc(Q∗

ν−1) is the force
between the beads ν−1 and ν, acting in the direction of the connector vector
between the two beads Q∗

ν = r∗ν − r∗ν−1 . The entropic spring force of a chain
of freely jointed bead-rods is often approximated by the Warner spring [1]:

Fc
fene(Q

∗) = Q∗,
1

1− q∗2
, (7)

where q∗ = Q∗/
√
b is the ratio of the magnitude of the connector vector Q∗

and the fully stretched length
√
b. We ignore solvent quality effects.
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The exact solution of the time evolution of various averages carried out
with the distribution function ψ, without any further approximations, can
be obtained by writing a stochastic differential equation (sde) equivalent
to Equation (1) and solving it with the help of a Brownian dynamics algo-
rithm [9]. In the presence of fluctuating hi, the problem of the computational
intensity of calculating the Brownian term has been attenuated significantly
recently [6] by the use of a Chebyshev polynomial representation [4] for the
Brownian term. We adopt this strategy, and the details of the exact algo-
rithm followed here are given in [10].

3 Method of successive fine graining

The key idea behind the method of successive fine graining (sfg) in the con-
text of bds under θ-conditions comes from a recent study by Kröger et al. [7],
which showed that finite N data can be extrapolated to N → ∞, to obtain
predictions which are independent of the choice hi parameter h∗. We carry
out a similar procedure under non-equilibrium conditions. Once the model
parameters are identified at a given level of the bead-spring representation N ,
the polymer is simulated in the presence of flow at various values of N and
the accumulated data is then extrapolated in a similar manner. This section
briefly outlines how the model parameters may be identified at a given level
of bead-spring representation of the bead-rod chain, and how the data is to
be extrapolated.

3.1 Model parameters for a given N

The key parameters in the model are the number of beads N , the finite ex-
tensibility parameter b and the hydrodynamic interaction parameter h∗. In
this work we restrict discussions to non-dimensional predictions, therefore
we do not explicitly identify the scale parameters lH and λH. One way to
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choose the parameters is such that the model reproduces certain equilibrium
properties of the real molecule. Here we distinguish between static and dy-
namic properties. The hi parameter does not alter static properties, which
are purely determined by N and b. As an example, the radius of gyration

R∗2
g,mod = χ2(b)

N2 − 1

2N
, (8)

where χ(b) is a known function of b for a given spring force model. For
Warner fene springs it is

χ2(b) =
b

b+ 5
. (9)

The contour length of the chain is

L0,mod = (N − 1)
√
b . (10)

The number of Kuhn steps Nk in the real polymer is

Nk ≡
L2

0,exp

6 (Rθ
g,exp)

2
, (11)

where L0,exp is the measured contour length and Rθ
g,exp is the measured radius

of gyration. Constructing a similar ratio from the model expressions from
Equations (8) and (10) we have

b

χ2(b)
= Nk

3 (N + 1)

N(N − 1)
. (12)

Given the experimentally measured ratio Nk and an arbitrary choice of the
number of beads N , the parameter b is evaluated from Equation (12). The
determination of h∗ for a given choice ofN and b so that the model reproduces
the dynamical equilibrium properties is a difficult problem in general [15].
However, in the long chain limitNk →∞ , it can be shown that the dynamical
properties are insensitive to the exact value of the hi parameter h∗ [7]. We
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have shown [15] that in the case of finitely extensible springs the correct
parameter that characterises hi is given by h̃∗ = h∗/χ for a given value of b.
An arbitrary value is assigned for h̃∗. Physically meaningful values of h̃∗ lie
in the range 0 < h̃∗ . 0.5 [8].

Another crucial parameter that arises only in the presence of flow is the
Weissenberg number, Wi. In this work

Wi = ε̇ λ1 , (13)

where ε̇ is the elongation rate and λ1 is the longest relaxation time, evaluated
by fitting an exponential to the tail of the relaxation of the function x2(t),
where x(t) is the average instantaneous stretch, when a fully stretched poly-
mer is left to relax to equilibrium as it is done in experiments of fluorescently
dyed polymers [14]. In terms of a bead-spring model the “stretch” or “ex-
tension” is defined as, xmax ≡ maxµ,ν |rx

µ − rx
ν | , where rx

µ is the x-component
of vector rµ, with x being the flow direction. Here, the average along the
direction of intended elongation is denoted as x ≡ 〈xmax〉 .

3.2 Extrapolation of results

In the presence of flow, in addition to using a model with finitely extensible
springs (fes), the total number of springs considered must also be finite, so
that the consequences of the finite size of the molecule may be accurately
represented. Simulations of bead-spring chain models with fes in extensional
flows have shown that, in general, in order to predict the behavior accurately
across a wide range of regimes, it is necessary to use models with a large
number of springs [5]. In principle, the maximum number of springs, (N−1),
that one can use, is equal to the number of Kuhn steps in the underlying
chain. In practice, with the force models currently used, fene or wlc, it
is not possible to reach (N − 1) → Nk . This is because of the limitations
imposed by the nature of χ(b) in Equation (12). It is straightforward to see,
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for instance, in the case of fene springs, where, χ(b) =
√
b/(b+ 5) , that

b becomes negative near N = 3Nk/5 .

The central hypothesis of the present work is that the behavior of an
underlying chain with Nk Kuhn steps, may be predicted by accumulating
data for a bead-spring chain model with fes, at various values of N where the
force law is valid, and extrapolating the accumulated results to the limitN →
Nk. Since increasing values of N represent more fine-grained versions of the
underlying chain, the procedure is called “successive fine-graining.”

For a polymer with fixed contour length (or equivalently, a fixed value
of Nk), successive fine-graining implies that the parameter b becomes a func-
tion of N , given by Equation (12). Furthermore, during the sfg procedure,
the value of h̃∗ is held constant as N → Nk. Physically, this is equivalent to
assuming that the hydrodynamic interaction parameter at each level of the
fine graining process is constant and equal to that of the underlying chain.
(Note that the conventional hi parameter h∗ = χ h̃∗ , changes as b changes).

4 Successive fine graining in elongational

flow: Results

The sfg procedure outlined above is now applied to case of a dilute solution
of polymers undergoing elongational flow. In this work we focus our attention
on the prediction of size measures. The prediction of elongational viscosity
is treated elsewhere [11]. The conformation of the polymer is characterised
by the expansion factor

E =
x+

x
, (14)

which is the ratio of the transient stretch to its value at equilibrium. This
quantity is experimentally accessible when the polymers are visually observed
under a microscope as they undergo expansion in elongational flow [14]. In
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an earlier work it was shown that it is possible to accurately predict the
conformations of dna using the sfg procedure [15]. The effect of increasing
polymer chain length is examined here. Polymers of three different lengths
are considered, namely, Nk = 200, 600 and 2000. The limiting behaviour for
Nk →∞ is also given.

For polymers with finite Nk, data is gathered at finite values of N =
15, 17, 19, 23, 27 and extrapolated to the corresponding N → Nk limit. At
each value of N , the parameters b and h∗ required for the simulation are
obtain as discussed in Section 3.1. Two values of h̃∗ are considered: h̃∗ =
0.19 , and 0.3, which bracket the fixed point value of 0.24 (with pre-averaged
hi) [15]. Once the longest relaxation time is estimated, the flow elongational
rates are fixed according to Equation (13). A Weissenberg number of Wi = 2
is considered. In all the simulations considered below, averages were obtained
using an ensemble of 104 polymer molecules.

An illustration of the extrapolation of finite N data to N → Nk is shown
in Figure 1 for Nk = 600 . At each value of the strain ε = ε̇ t , the value of
expansion factor E obtained from the finite N runs is extrapolated to N →
600 . The locus of all extrapolated points at various strains for the two chosen
values of h̃∗ is given in Figure 2. The two curves are indistinguishable within
error bars for small strain units and begin to come apart with increasing
strain. The physical reason for this is explained elsewhere [15].

In Figure 3, the unraveling of polymers of various chain lengths are com-
pared. Also shown is the limiting behaviour for Nk → ∞ , which is the
universal unraveling of a polymer under θ-conditions obtained by using a
Hookean spring force model and extrapolating the finite N data to the limit
N →∞ [15]. In Figure 3, the expansion factor E for the finite Nk polymers
is seen to level off to an asymptotic steady state value, clearly highlighting
the central difference between finite and infinite chains. At a threshold value
of strain, the finite character of the chain leads to the existence of a point
of inflection on the curves, where the slope stops increasing and starts to
decrease. The point of inflexion occurs at higher strains for longer chains.
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Figure 1: Illustration of the sfg procedure for a model with fene springs,
at a fixed value of Hencky strain, ε = 3 for Nk = 600 . Symbols for N < Nk

have been obtained by carrying out simulations at two different values of h̃∗.
Lines through the symbols represent an extrapolation to the limit N → Nk.
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Figure 2: Expansion factor E, in extensional flow, for a model with fene
springs with two different values of h̃∗. Symbols are extrapolated values,
obtained by the sfg procedure with Nk = 600 .
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Figure 3: Effect of chain length on the unraveling of a polymer in elonga-
tional flow. The hi parameter is h̃∗ = 0.19 and Wi = 2 , in all cases.

This corroborates the expectation that longer chain lengths remain in a coil
like state for larger strains before the finiteness is explored by the flow.

5 Conclusion

The effect of polymer chain length on the unraveling dynamics in elongational
flow was examined using the method of successive fine graining (sfg). The
method provides a unified framework to study both chains of finite lengths
and its limiting behaviour at an infinite lengths. It was shown that the
unraveling curve of infinite length polymer acts as an envelope for all finite
chains. Essentially, for a given value of the Weissenberg number, the strain
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at which a finite chain curve departs from the Hookean curve, depends on
the value of Nk. For increasing values of Nk, the point of departure occurs at
increasing values of strain. The sfg method also provides a computationally
tractable procedure to model very long chain polymer molecules, which are
otherwise difficult to be treated with the bead-rod model. Predictions for a
chain with Nk as large as 2000 rods was obtained with bead-spring chains
with as few as 27 beads.
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