
ANZIAM J. 46 (E) ppC394–C408, 2005 C394

Computing the preconditioner for the Schur
complement

K. Moriya∗ T. Nodera†

(Received 27 October 2004; revised 11 March 2005)

Abstract

The Newton scheme is used to construct an approximate inverse
preconditioner for the Schur complement. However, this scheme is
very expensive because of the computation cost of the matrix-matrix
product. In this paper, the computation cost of the Newton scheme
is reduced by implementing the preconditioner implicitly using the
matrix-vector product. We also show that such an implementation is
less expensive than computing the preconditioner explicitly.
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1 Introduction

We consider the problem of solving a large and sparse linear system of equa-
tions:

Ax = b , A ∈ Rn×n , x, b ∈ Rn . (1)

In order to reduce the size of the linear system (1), we arrange a reduced lin-
ear system with a Schur complement by using an independent set. The Schur
complement is composed by reordering the rows and columns of matrix A.
We aim to apply an approximate inverse preconditioner to a reduced linear
system with the Schur complement to improve the convergence rate. We
are interested in the Newton scheme for computing the approximate inverse
preconditioner since it is simple to implement. However, the matrix-matrix
product is more difficult to compute as the preconditioner is less sparse. In
this paper, we implement the Newton scheme without the matrix-matrix
product. This implementation computes the preconditioner implicitly by us-
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ing the matrix-vector product. The numerical results suggest that computing
the preconditioner implicitly is more effective than computing it explicitly.

This paper is organized as follows. Section 2 provides an overview of
composing the Schur complement. In Section 3, we consider the Newton
scheme for the approximate inverse preconditioner and implement the pre-
conditioner implicitly. The numerical results are reported in Section 4, and
the concluding remarks are presented in Section 5.

2 Composing the Schur complement

2.1 Independent set

In this subsection, we introduce the independent set G. The indices si and sj

are independent of each other if the entries asisj
, asjsi

∈ A (si 6= sj) are zero.
All the indices belonging to G must be independent of each other. Therefore,
define

G := {s1, s2, . . . , sk | asisj
= 0, asjsi

= 0, for all i, j = 1, 2, . . . , k} ,

where k is the number of entries of G. The independent set G is constructed
by using the Greedy algorithm. For more details on the implementation of
the Greedy algorithm, see [7].

2.2 Reordering the rows and columns

Let G ∈ {s1, s2, . . . , sk} be the independent set selected from the row and
column indices of matrix A. The components of the linear system (1) are
rearranged into the forms

PAP T =

(
A1 A2

A3 A4

)
, Px =

(
x1

x2

)
, Pb =

(
b1

b2

)
, (2)
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where P is a suitable permutation matrix. The row and column indices of
sub-matrix A1 belong to G. Since A1 is usually a diagonal matrix, it is not
difficult to obtain A−1

1 . From the reordering forms (2), the following reduced
linear system of size ñ = n− k is generated:

Cx2 = b̃, (3)

where
C = A4 − A3A

−1
1 A2 , b̃ = b2 − A3A

−1
1 b1 .

The coefficient matrix C is the so-called Schur complement of sub-matrix A1.
The nonzero entries of matrix C need not be stored since the iterative solver
of the linear system requires Cv . Therefore, only four products A−1

1 v1 ,
A2v2 , A3v3 and A4v4 have to be computed.

3 Implementation of the preconditioner

In this section, we use the Newton scheme to develop the approximate inverse
preconditioner.

3.1 Initial guess in Newton iteration

Schulz [1] proposed the Newton formula

Nl+1 = (2I −NlC)Nl , (4)

where Nl is the preconditioner of matrix C in the lth Newton iteration. The
convergence of the Newton scheme depends on the initial guess N0. The
preconditioner Nl converges to matrix C−1 if the spectral radius ρ(I −N0C)
is less than 1.0 [8]. Ben–Israel et al. [3] proved that this preconditioner
converges to C−1 if the Newton iteration begins with

N0 = αCT , (5)
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and the condition

0 < α <
2

ρ(CCT )
(6)

is satisfied (Householder [2, p.95]). Here, ρ(.) denotes the spectral radius of
the matrix. Pan et al. [6] selected α = 1/(‖C‖1‖C‖∞) . This makes

N0 =
CT

‖C‖1‖C‖∞
, (7)

where ‖C‖1 = maxj

∑ñ
i=1 |cij| and ‖C‖∞ = maxi

∑ñ
j=1 |cij| . However, the

problem with this selection is that all the nonzero entries of matrix C are
required for computing the matrix norms ‖C‖1 and ‖C‖∞. All the nonzero
entries of C must be computed with the matrix-matrix product. Therefore,
it is very expensive to compute the initial guess N0 with equation (7).

On the other hand, we select the diagonal matrix

N0 = diag {1/c11, 1/c22, . . . , 1/cññ} (8)

as the initial guess, where cii is the ith diagonal entry of matrix C. The
advantages of this choice are that only the diagonal entries of C are needed
and the number of nonzero entries is limited to ñ. The numerical results
reported in Section 4 show that Nl performs well as the preconditioner even
if the equation (8) is selected as the initial guess N0. In general, the New-
ton formula (4) does not always converge to C−1 even if the equation (8) is
selected. However, we focus on reducing the computation cost of N0. More-
over, in Section 4, we show that the selection (7) as the initial guess N0 is
more expensive than selecting (8).

3.2 Newton scheme without the matrix-matrix
product

The difficulty in using the Newton formula (4) is that the matrix-matrix
product is often very expensive to compute. In order to overcome this draw-
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back, we implement the Newton scheme without the matrix-matrix product.
The main goal of this implementation is to avoid matrix-matrix products in
the Newton scheme by using the matrix-vector product. The iterative solver
does not need the preconditioner Nl in explicit form; Instead, it requires Nlv ,
where v is an arbitrary vector. Therefore, we compute Nl implicitly by us-
ing Nlv . By substituting the Newton formula (4) in the equation wl = Nlv ,
we describe vectors w0, w1, w2 and w3:

w0 = N0v , (9)

w1 = (2I −N0C)N0v = 2w0 −N0Cw0 , (10)

w2 = (2I −N1C)N1v

= {2I − (2I −N0C)N0C}w1

= 2w1 − (N0C){2w1 − (N0C)w1} , (11)

w3 = (2I −N2C)N2v

= {2I − (2I −N1C)N1C}w2

= [2I − {2I − (2I −N0C)N0C}(2I −N0C)N0C]w2

= 2w2 − (N0C)[4w2 − (N0C)×
{6w2 − (N0C){4w2 − (N0C)w2}}] . (12)

When l ≥ 4 , it is possible to compute the vector wl in the same manner as
when l ≤ 3 . wl requires only N0v1 and Cv2 , and no matrix-matrix prod-
uct is needed. In general, the number of matrix-vector products required
by wl is 2l. Therefore, l should be relatively small in order to reduce the
computation cost of the matrix-vector product. Compared with other pre-
conditioners, fill-in must be considered in the incomplete LU preconditioner,
and the drop-off of nonzero entries is needed in the approximate inverse com-
puted from the mr algorithm [8]. On the other hand, regarding the implicit
implementation considered in this paper, the sparsity pattern of the precon-
ditioner Nl need not be considered since Nl is not computed explicitly. This
fact is also one of the advantages of computing Nl implicitly.
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4 Numerical experiments

The numerical experiments are executed on a pc with Pentium4 2.66GHz
processor and 512MB main memory. In all examples, the Schur complement
is generated from matrix A to solve the reduced linear system (3).

4.1 First example

We discuss the boundary value problem of nonlinear partial differential equa-
tions in the region Ω = [0, 1]3 (see Schönauer [5]):

uxx + uyy + uzz +D(uux + vuy + wuz) + u = f1 on Ω ,
vxx + vyy + vzz +D(uvx + vvy + wvz) + v = f2 on Ω ,

wxx + wyy + wzz +D(uwx + vwy + wwz) + w = f3 on Ω .
(13)

The right hand side functions f1, f2 and f3, and the boundary condition are
chosen so that the exact solutions are

u = sin(πx) cos(πy) cos(πz) ,

v = cos(πx) sin(πy) cos(πz) ,

w = cos(πx) cos(πy) sin(πz) .

The problem (13) is discretized by the seven points central difference scheme
using a square 40 × 40 × 40 grid, where the mesh width h is 1/41. In the
equation (13), note that D is defined as the Reynolds number. In Table 1,
D is varied so that the product Dh is equal to 2−6, 2−5, 2−4 and 2−3. From
the discretization, a nonlinear system of size 192,000 is generated. The dis-
cretized nonlinear system is usually solved by the following Newton scheme:

ql+1 = ql + J(ql)
−1ψ(ql) , (14)

where ql, ψ(ql) and J(ql) are the lth approximate solution, residual vector
and Jacobi matrix of ψ(ql), respectively. In the Newton formula (14), the
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linear system
J(ql)x = ψ(ql) (15)

must be solved once per iteration step. Although the discretized nonlinear
system can also be solved by the inexact Newton scheme [9], it is not discussed
in this paper. The linear system (15) is transformed into a reduced linear
system with a Schur complement of size 128,000. In this example, when it
is the first step of the Newton formula (14), the reduced linear system is
solved by gmres(m) algorithm [4]. The initial guess q0 is produced using
the linear polynomial connecting two grid points: (0, jh, kh) and (1, jh, kh).
We also apply the preconditioner Nl to the reduced linear system using the
implicit implementation, as mentioned in Subsection 3.2. The iteration of
the gmres(m) algorithm is terminated as soon as the stopping criterion on
the residual norm,

‖ri‖2/‖r0‖2 ≤ 1.0× 10−12 , (16)

is satisfied, where ri is the ith residual vector of gmres(m) algorithm. The
zero vector is employed as the initial approximate solution of the reduced
linear system. In the first experiment, the computation time of the initial
guess N0 is measured with respect to the cases of using the equations (7)
and (8) when Dh = 2−6 . Even if the equation (7) is selected as the initial
guess N0, Nlv is not required explicitly for matrix CT . Therefore, only the
matrix norms ‖C‖1 and ‖C‖∞ need to be computed. However, all the nonzero
entries of matrix C are required for obtaining ‖C‖1 and ‖C‖∞, as mentioned
in Subsection 3.1. On the other hand, if the equation (8) is selected, only
the diagonal entries of C are required.

Whereas the computation time of the matrix norms ‖C‖1 and ‖C‖∞ is
5150.0 s, that of the diagonal entries of C is 1.9 s. Therefore, the Newton
formula (4) begins with the equation (8). Table 1 presents the computa-
tion time and iterations of the gmres(m) algorithm that are required for
satisfying the criterion (16). ‘Nl + gmres(m)’ and ‘gmres(m)’ denote the
gmres(m) algorithm that is preconditioned using Nl computed implicitly
and the non-preconditioned gmres(m) algorithm, respectively. The param-
eter Dh is varied from 2−6 to 2−3. In any restart of the gmres(m) algorithm,
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Table 1: Example 4.1: The performance of the gmres(m) algorithm (time:
Computation time (s), iter: Iterations)

Dh
Algorithm 2−6 2−5 2−4 2−3

time iter time iter time iter time iter
gmres(20) 116.0 415 122.0 437 127.0 453 132.0 474
N0+gmres(20) 117.0 414 121.0 432 123.0 440 134.0 474
N1+gmres(20) 60.0 163 56.0 152 54.0 147 62.0 170
N2+gmres(20) 54.0 101 55.0 105 55.0 104 57.0 108
N3+gmres(20) 54.0 61 55.0 64 60.0 69 63.0 73
gmres(30) 107.0 339 101.0 330 112.0 355 125.0 395
N0+gmres(30) 102.0 326 104.0 330 112.0 355 122.0 389
N1+gmres(30) 55.0 139 55.0 139 55.0 139 54.0 137
N2+gmres(30) 45.0 80 49.0 87 54.0 96 55.0 100
N3+gmres(30) 54.0 59 54.0 60 56.0 62 58.0 64
gmres(40) 115.0 329 117.0 335 105.0 302 125.0 354
N0+gmres(40) 107.0 308 100.0 287 104.0 300 120.0 347
N1+gmres(40) 53.0 122 54.0 124 59.0 138 62.0 145
N2+gmres(40) 50.0 85 52.0 87 53.0 90 55.0 93
N3+gmres(40) 51.0 56 54.0 58 57.0 62 60.0 65
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Figure 1: Example 4.1: The convergence behavior of the preconditioned
gmres(30) algorithm, (Dh = 2−6): (a) Residual norm versus Time (s);
(b) Residual norm versus Iterations.
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theN0+gmres(m) and gmres(m) algorithms do not converge within 100.0 s.
On the other hand, the N1+gmres(m), N2+gmres(m) and N3+gmres(m)
algorithms converge in 45.0 to 77.0 s. Figure 1 illustrates the behavior of the
residual norm of the preconditioned gmres(30) algorithm when Dh = 2−6 .
While the iterations of the N2 + gmres(30) algorithm cost more than those
of the N3 + gmres(30) algorithm, the computation time of the former is
less expensive than that of the latter. Also the convergence behaviors of the
N1 + gmres(30) and the N3 + gmres(30) algorithms are almost the same.
Moreover, the computation cost of Nl in explicit form is measured in order
to compare it with Nlv when l = 1, 2, 3 . The computation time of N1 in
explicit form is 5383.0 s. Obviously, the explicit computation of N1 is more
expensive than the computation of the gmres(m) algorithm preconditioned
implicitly. It is impossible to compute N2 and N3 explicitly due to insufficient
strategies. Therefore, the explicit computation of Nl is not effective. The
time of the convergence of all the gmres(m) algorithms preconditioned with
the equation (8) in Table 1 is less than the time required for obtaining N0

from the equation (7), because the computation time of ‖C‖1 and ‖C‖∞ is
5150.0 s. The computation of N0 with the equation (8) is included in the
computation time in Table 1. Therefore, it is more effective to select the
equation (8) instead of the equation (7) in Example 4.1. From these rea-
sons, we do not discuss the convergence of the gmres(m) algorithm that is
preconditioned using the equation (7).

4.2 Second example

In this example, we discuss three types of linear systems with coefficient
matrices in Florida Sparse Matrix Collection [10]. Their coefficient matrices
are termed ‘epb3’, ‘lung2’ and ‘torso2’. The size and nonzero entries of
these three matrices are listed in Table 2. For more details on these matrices,
see [10]. In all linear systems, the right hand side is determined so that all the
entries of the exact solution are 1.0. Similar to Example 4.1, a reduced linear
system is produced and solved by the gmres(m) algorithm, where the size
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Table 2: Example 4.2: The characteristics of the coefficient matrices

Matrix name Size Nonzero entries Size of Schur complement
epb3 84617 463625 63318
lung2 109460 492564 82104
torso2 115967 1033473 86658

of the Schur complement is given in Table 2. In this example, the computa-
tion time of the initial guess N0 is measured. Regarding ‘epb3’, ‘lung2’ and
‘torso2’, the computation times of the diagonal entries of matrix C are 0.26,
0.31 and 0.43 s, respectively. On the other hand, the computation times of the
matrix norms ‖C‖1 and ‖C‖∞ are 1089.0, 1729.0 and 3097.0 s, respectively.
Therefore, we select the equation (8) as the initial guess N0. Table 3 shows
the computation time and the iterations of the gmres(m) algorithm. The
preconditioner Nl is computed implicitly using the matrix-vector product.
In all linear systems, the preconditioned gmres(m) algorithm works bet-
ter than the non-preconditioned gmres(m) algorithm. Particularly in the
case of ‘epb3’, the preconditioner Nl makes the convergence faster as l is in-
creased. Moreover, the computation time of the preconditioner Nl in explicit
form is measured. With regard to ‘epb’, ‘torso2’ and ‘lung2’, the compu-
tation times of N1 are 936.0, 1504.0 and 2659.0 s, respectively. In all these
cases, preconditioners N2 and N3 cannot be computed since the strategies
are inadequate. Therefore, computing Nl explicitly is more expensive than
computing it implicitly using the matrix-vector product. In Table 3, some of
gmres(m) algorithms that are preconditioned with Nl using the equation (8)
converge for ‘epb’. Regarding the case of ‘epb’, we compute N1, N2 and N3

implicitly based on the equation (7) and apply it to the gmres(m) algorithm
for comparison with the equation (8). However, in any restart of the gm-
res(m) algorithms that are preconditioned with N1, N2 and N3 using the
equation (7), the residual norm could not converge within 15min. There-
fore, the equation (8) is a better selection than the equation (7). It is also
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Table 3: Example 4.2: The performance of the gmres(m) algorithm (time:
Computation time (s), iter: Iterations)

Matrix name
Algorithm epb3 lung2 torso2

time iter time iter time iter
gmres(20) – – – – 8.0 66
N0+gmres(20) – – 120.0 1305 5.0 35
N1+gmres(20) – – 57.0 536 3.0 20
N2+gmres(20) – – 43.0 301 3.0 13
N3+gmres(20) 185.0 1063 42.0 190 3.0 9
gmres(30) – – – – 9.0 64
N0+gmres(30) – – 121.0 1161 5.0 35
N1+gmres(30) – – 57.0 457 3.0 20
N2+gmres(30) 445.0 3514 43.0 263 3.0 13
N3+gmres(30) 226.0 1203 41.0 168 3.0 9
gmres(40) – – – – 9.0 65
N0+gmres(40) – – 132.0 1070 5.0 34
N1+gmres(40) 674.0 6084 60.0 424 3.0 20
N2+gmres(40) 278.0 1962 44.0 244 3.0 13
N3+gmres(40) 195.0 963 41.0 159 3.0 9
(–): the algorithm could not converge within 15min.
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suggested that the good approximate preconditioner is not obtained within
three iterations of the Newton scheme even if the equation (7) is selected as
the initial guess.

5 Concluding remarks

We implemented the preconditioner Nl of the reduced linear system implic-
itly by using the matrix-vector product. By implementing it implicitly, no
matrix-matrix product is needed. Moreover, we also selected the diagonal
matrix as the initial guess of the Newton iteration in order to make it easy
to compute. The numerical results show that the computation of N1 costs
more than that of N1v . The preconditioner Nl in explicit form cannot be
obtained if l ≥ 2 . Therefore, the implicit implementation considered in this
paper is a better alternative to computing the preconditioner Nl explicitly.
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