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Numerical techniques for linear and nonlinear
eigenvalue problems in the theory of elasticity
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Abstract

Consider algorithms to solve eigenvalue problems for partial dif-
ferential equations describing the bending of a von Kármán elastic
plate. Here we explore numerical techniques based on a variational
principle, Newton’s iterations and numerical continuation. The vari-
ational approach uses the Galerkin spectral method. First we study
the linearized problem. Second, eigenfunctions of the nonlinear equa-
tions describing post-buckling behaviour of the von Kármán plate are
calculated. The plate is supposed to be totally clamped and com-
pressed along its four sides. The basis functions in the variational
procedure are trigonometric functions. They are chosen to match the
boundary conditions. Effective computational techniques allow us to
detect bifurcation points and to trace branches of solutions. Numeri-
cal examples demonstrate the efficiency of the methods. The proposed
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algorithms are applicable to similar problems involving elliptic differ-
ential equations.

Contents

1 Introduction C427

2 Mechanical formulation C428

3 Eigenvalues of the linearized problem C430

4 Spectral method and continuation for nonlinear problems C432

5 Numerical examples C437

References C437

1 Introduction

I aim to demonstrate robust numerical techniques for a class of problems
which describe the behaviour of thin elastic rectangular plates. The basic
idea lies in variational studies of mechanical models. We will find eigenvalues
and eigenfunctions using the Galerkin spectral method.

Post-buckling behaviour of the von Kármán plate has been investigated
by several authors and there are many numerical approaches for treating
these mechanical models. The majority of the numerical methods employ ei-
ther finite elements or finite differences. The existing techniques for discrete
schemes are based on the Newton-gmres algorithm [2, 5, e.g.] and sophis-
ticated numerical continuation [1]. For example, Chien, Chang & Mei [2]
applied the gmres algorithm in the context of numerical continuation for
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the plate compressed on its two sides. The most general case of bifurca-
tion phenomenon was studied numerically by Allgower & Georg [1]. Holder,
Schaeffer [7] and Golubitsky [8] have shown that so-called mode jumping,
when the primary solution branches lose stability through further bifurcation
“may occur under the partially but not for the simply supported conditions”.
Mode jumping may also occur under totally clamped conditions. Dossou &
Pierre [5] recently analyzed deformation and bifurcation for the discrete von
Kármán problem by the Newton-gmres approach.

Here we propose a spectral method with a choice of global trial functions
which span the whole domain. This approach guarantees high accuracy and
computational efficiency. In Section 2 we formulate the nonlinear mechanical
model and consider the totally clamped (Dirichlet and Neumann) conditions.
The plate is subjected to a uniform lateral compression on its four sides. The
totally clamped conditions are the most interesting, since then the behaviour
of the solution becomes more complicated. Section 3 is devoted to a numerical
analysis of the linearized von Kármán problem. We use the Galerkin proce-
dure to compute eigenvalues. Section 4 demonstrates the spectral method
for the nonlinear model and the numerical continuation algorithm for trac-
ing the branches of the solutions. Some numerical examples are illustrated
in Section 5.

2 Mechanical formulation

The two-dimensional model of bending and stretching of a rectangular plate
with buckling is

D∆2w = 2h0[w,ψ] + λ[θ, w] , (x, y) ∈ G ,

∆2ψ = −E
2

[w,w] , (1)
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where G = (0, l1) × (0, l2) is the shape of the plate (l1 and l2 are lengths of
the sides of the plate),

[w,ψ] =
∂2w

∂x2

∂2ψ

∂y2
+
∂2ψ

∂x2

∂2w

∂y2
− 2

∂2w

∂x∂y

∂2ψ

∂x∂y
,

w(x, y) denotes the deflection, ψ(x, y) is the Airy stress potential, θ is a
regular function defined on G, with values which depend on the portion of the
boundary, subjected to compression, λ is the intensity of this compression,
D = 2Eh3

0/[3(1− ν2)] is the cylindrical rigidity, E is Young’s modulus, 2h0 is
a thickness of the plate and ν is Poisson’s ratio. If the plate is compressed
on each side then

θ(x, y) = −1

2
(x2 + y2) . (2)

I assume that all physical parameters in (1) have unit magnitude (the
techniques are applicable for different values of D, h0, E). This assumption
is valid for polygonal plates.

The plate, compressed on its two ends was considered by [8, 7, 3, 2, e.g.].
We study the case in which the plate is compressed on its four sides, that is,
(2) holds. Thus, (1) becomes

∆2w = [w,ψ]− λ∆w , (x, y) ∈ G ,
∆2ψ = −[w,w] . (3)

The linearized (spectral) equation implies

∆2w + λ∆w = 0 , (x, y) ∈ G . (4)

If the plate is totally clamped, the classical boundary conditions on the edges
are

w =
∂w

∂n
= 0 , (x, y) ∈ ∂G ,

ψ =
∂ψ

∂n
= 0 , (x, y) ∈ ∂G . (5)
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Here ∂
∂n

denotes the normal derivative. According to the results of [4], if λ ≤
λ11 , where λ11 is the first eigenvalue of the linearized problem (4) and (51)
then (3) and (5) has a unique trivial solution. If λ > λ11 then (3) and (5)
has at least three solutions: (w,ψ), (−w,ψ), (w 6= 0 , ψ 6= 0) and (0, 0).

3 Eigenvalues of the linearized problem

The first step of the numerical analysis is to detect primary bifurcation points.
Actually, buckling loads λ, for which the solution of (3) and (5) bifurcates
from the trivial one correspond to eigenvalues of the appropriated linearized
problem (4) and (51). The corresponding branches we call primary branches
and subsequent bifurcations from them are called secondary ones. The sec-
ondary bifurcation points can be detected by a Newton-based method with
rationally computed quantities, suggested by Harrar & Osborne [6]. This idea
is also described in [5]. Singular points are detected along solution curves by
a scalar quantity, called a detector. The secondary bifurcation often results
from splitting a double eigenvalue by perturbation.

To compute eigenvalues of the linearized problem (4) and (51) the Galerkin
procedure is applied. The solution is found as partial sums of double series

WN(x, y) =
N∑

i,j=1

wij
Nωij(x, y) , (6)

where ωij(x, y) are global trial functions and N is a natural number.

The coordinate functions ωij(x, y) = χ2Pi(x)χ
2Pj(y) , where the second

order divided differences with respect to the indexes of the Legendre polyno-
mials

χ2Pi(x) =

√
2i+ 1

2
(aiPi+2(x) + ciPi(x) + biPi−2(x)) ,
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with ai =
1

(2i+ 1)(2i+ 3)
,

ci = − 2

(2i− 1)(2i+ 3)
,

bi =
1

(2i− 1)(2i+ 1)
.

Vashakmadze [9] applied these to similar linear problems on the square Ḡ =
[−1, 1]2. We use them for (4) and (51).

For our purposes it is more convenient to use combinations of trigono-
metric functions for solving the nonlinear equations. They reflect the shape
of the eigenfunctions of the nonlinear problem and the Fourier coefficients of
the expansion are good guides for following branches of the solutions. There-
fore, we introduce a new basis for (4) and (51), which will be applied to the
nonlinear problem as well. The basis is

ωij(x, y) = χ cos

(
i

l1
πx

)
χ cos

(
j

l2
πy

)
, (7)

where χ cos( i
l
πx) =

√
2/l

(
cos( i+1

l
πx)− cos( i−1

l
πx)

)
and {χ cos( i

l
πx)}N

i=1 is
a system of linear independent elements for arbitrary N , complete in the
Sobolev space W 2,2(G) and satisfying the boundary conditions (51)

1.

The Galerkin method gives the linear discrete eigenvalue problem

(KwN)mn = λ(BwN)mn, m, n = 1, 2, . . . , N , (8)

where (KwN)mn = 〈∆2WN , ωmn〉 and (BwN)mn = −〈∆WN , ωmn〉 . The
scalar products are taken in L2. The system (8) is split into four subsys-
tems, subjected to evenness of indexes (m,n). Each of these subsystems is

1Note, cos( i
lπx) − cos( i+2

l πx) are eigenfunctions of the ordinary differential equation
which is obtained after the use of the rule of separation of variables to ∆2w + λwxx = 0
[8, 7, 2, e.g.]. The boundary conditions are partially clamped.
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solved separately. Under l1 = l2 = 1 , N = 30 the computed eigenvalues λmn

(m,n = 1, 2, . . . , 5) are:

52.345 92.126 92.126 128.215 154.130 167.031 189.583 189.583
246.327 246.327 246.351 269.141 279.092 326.681 326.681 349.327
362.755 380.333 380.333 403.927 425.485 434.837 481.699 481.699
501.061

4 The spectral method and numerical

continuation for the nonlinear problem

The techniques, introduced in Section 3, are extended to (3) and (5). Thus,

WN(x, y) =
N∑

i,j=1

wij
Nωij(x, y) , ΨN(x, y) =

N∑
i,j=1

ψij
Nϕij(x, y) , (9)

where ωij(x, y) = ϕij(x, y) = χ cos( i
l1
πx)χ cos( j

l2
πy) , see (7). After apply-

ing the Galerkin method to (3) and (5) we obtain the nonlinear algebraic
equations

(K1wN)mn = Amn
1,N(wN , ψN) + λ(BwN)mn ,

(K2ψN)mn = Amn
2,N(wN , wN), m, n = 1, 2, . . . , N . (10)

Here K1,N , K2,N and BN are linear and A1,N and A2,N are nonlinear discrete
operators.

We solve (10) by a combination of the Newton and numerical continuation
algorithms with respect to the load parameter λ. An alternative is to fix λ
and vary the plate dimensions.

Let η be an eigenvalue of the linearized problem (4) and (51). Consider
λ ∈ [λ1 , λ1 + Λ] , where λ1 = η + ε , ε is a small positive number and Λ is
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an arbitrary positive number. Suppose λk+1 = λk + δk , k = 1, 2, . . . ,M − 1 ,
λM = λ1 + Λ . To start Newton’s iterations for (10) we choose λ = λ1 , then
use the previous results for the next λ2 and continue so on.

Below we demonstrate an effective algorithm for tracing the branches of
the eigenfunctions. It computes the coefficients wij

N in (9).

1. Start with λ = λk = η + ε , where k = 1 .

2. Choose the initial approximations
(0)

wij
N(λk) for the coefficients wij

N(λk)

in the expansion (9) putting
(0)

wi1j1
N (λk) = c(ε) 6= 0 ,

(0)

wij
N(λk) = 0 , i 6= i1 ,

j 6= j1 . Here wi1,j1
N is the largest coefficient in the expansion (9).

3. Solve (10) by the Newton method with the initial approximations which
have been chosen at Step 2. If the iterative process approaches the
trivial solution or diverges then increase or decrease |c(ε)| respectively
and return to Step 2.

4. Put λ = λk+1 = λk + δk , where δk is a positive number.

5. Choose the initial approximations
(0)

wij
N(λk+1) putting

(0)

wij
N(λk+1) = wij

N(λk) ,
i, j = 1, 2, . . . , N , where wij

N(λk) were computed before.

6. Solve (10) by the Newton method with the initial approximations which
have been chosen at Step 5. If the process diverges or approaches the
trivial solution then decrease δk and return to Step 4.

7. Repeat Steps 4–6 for k = 2, 3 . . . ,M − 1 until λ = λM = λ1 + Λ .

In the algorithm the largest coefficient wi1j1
N is revealed by solving the

linearized problem (4) and (51). For instance, for η = λ11 = 52.345 (see the
example in Section 3) the largest component of the corresponding eigenvector
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Figure 1: l1 = l2 = 1 , N = 6 , η1 = λ11 = 52.345 , η2 = λ12 = λ21 = 92.126 .

is w11
N . Therefore in the algorithm we should put

(0)

w11
N (λk) = c(ε) 6= 0 (for

example, c = 0.1 , ε = 1 , N = 5).

If the solution jumps on the other branch at Step 6 then we deal with the
secondary bifurcation or mode jumping.

The methods have been implemented in Python. Numerical examples are
demonstrated in Section 5.
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Figure 2: l1 = 3.3 , l2 = 1 , N = 6 , η1 = λ21 = 37.874 , η2 = λ11 = 38.338 .
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Figure 3: l1 = 3.5 , l2 = 1 , N = 6 , η1 = λ21 = 37.805 , η2 = λ31 = 38.216 .
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5 Numerical examples

Figures 1, 2 and 3 show maxGM
WN(xi, yj) and minGM

WN(xi, yj) (GM =
{(xi, yj) | i, j = 1, 2, . . . , 10}) of the first two curves of the solution WN

(Branches I and II) and their symmetrical ones with different sizes of the
plate. In Figures 1, 2 and 3, ωij denotes that trial function which has
the largest coefficient in the expansion (9). On Figure 1 Branch I has one
nodal domain, Branch II has two nodal domains in which maxGM

WN =
−minGM

WN and η2 is a double bifurcation point. On Figure 2 Branch I
has two nodal domains and maxGM

WN = −minGM
WN , Branch II has three

nodal domains from the beginning, in which maxGM
WN 6= −minGM

WN ,
then it changes the configuration at the point λ = 39.090 (secondary bifur-
cation point) and has only one nodal domain. On Figure 3 Branch I has two
nodal domains and maxGM

WN = −minGM
WN , Branch II has three nodal

domains from the beginning, in which maxGM
WN 6= −minGM

WN , then it
changes the configuration at λ = 39.349 (secondary bifurcation point) and
has only one nodal domain.
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