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Analysis of a discrete non-Markovian random
walk approximation for the time fractional

diffusion equation
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Abstract

The time fractional diffusion equation (tfde) is obtained from the
standard diffusion equation by replacing the first-order time derivative
with a fractional derivative of order in (0,1). In this work, an explicit
finite-difference scheme for tfde is presented. Discrete models of a
non-Markovian random walk are generated for simulating random pro-
cesses whose spatial probability density evolves in time according to
this fractional diffusion equation. We derive the scaling restriction of
the stability and convergence of the discrete non-Markovian random
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walk approximation for tfde in a bounded domain. Finally, some nu-
merical examples are presented to show the application of the present
technique.
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1 Introduction

Increasingly many authors from various fields of science and engineering
deal with dynamical systems described by fractional-order differential equa-
tions [9]. Fractional-order differential equations provide a powerful instru-
ment for the description of memory and hereditary properties of different
substances. Diffusion equations that use time fractional derivatives are at-
tractive because they describe a wealth of non-Markovian random walks.

Time fractional diffusion equations have recently been treated by some.
Typically, the solution is given in closed form in terms of Fox functions [13].
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Schneider and Wyss [10] considered the time fractional diffusion and wave
equations and derived the corresponding Green functions in closed form for
arbitrary space dimensions in terms of Fox functions. Gorenflo et al. [2]
used similarity methods and Laplace transforms to obtain the scale invari-
ant solution of the time fractional diffusion wave equation in terms of the
Wright function. However, an explicit representation of the Green functions
for the problem in a half-space is difficult to determine, except in the spe-
cial cases of a first-order time derivative in arbitrary dimension n, or n = 1
with arbitrary fractional-order time derivative. Huang and Liu [4] considered
the time-fractional diffusion equations in an n-dimensional whole-space and
half-space. They investigated the explicit relationships between the prob-
lems in whole-space with the corresponding problems in half-space by the
Fourier–Laplace transform. Liu et al. [5] considered time fractional advec-
tion dispersion equation and derived the complete solution.

The most significant advantage of fractional order models in comparison
with integer order models is based on its important fundamental physical
considerations. However, because of the absence of appropriate mathematical
methods, fractional order dynamical systems were studied only marginally in
theory and practice of control systems. Numerical methods and theoretical
analysis of fractional differential equations are very difficult tasks [6, 7].

Time fractional diffusion and wave equations have been derived by con-
sidering continuous time random walk (ctrw) problems, which generally
involve non-Markovian processes, and via diffusion in fractal media. Diffu-
sion equations with fractional spatial derivative are used for studying Lévy
stable processes. The physical interpretation of the fractional derivative in
both cases is that it represents a degree of memory in the diffusing material.

Here, numerical methods of the time fractional diffusion equation (tfde)
are considered. tfde has been investigated by several authors for different
purposes [3, 13]. Gorenflo et al. [3] adopted a suitable finite-difference scheme
and generated a discrete random walk approach. From a physical view point,
this generalized diffusion equation is obtained from a fractional Fick law that
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describes transport processes with long memory. The fundamental solution
of the tfde is interpreted as a probability density of a self-similar non-
Markovian stochastic process related to a phenomenon of slow anomalous
diffusion [14]. We use an effective explicit finite-difference scheme [11] for
tfde, and generate discrete models of random walk suitable for simulating
random variables whose spatial probability density evolves in time according
to this fractional diffusion equation. Subsequently, the conditions for the
stability and convergence of the explicit finite-difference scheme for tfde
in a bounded domain are derived. Some numerical examples are presented.
The results show that for time fractional derivatives of order α ∈ (0, 1) , the
system exhibits diffusion behaviors. The techniques can be applied to deal
with fractional-order dynamical systems and controllers.

2 The discrete non-Markovian random walk

approximation

Consider the time fractional diffusion equation

tD
α
∗ u(x, t) =

∂2

∂x2
u(x, t) , 0 < α < 1 , x ∈ R , t ∈ R+

0 , (1)

where tD
α
∗ denotes the time fractional derivative intended in the Caputo

sense:

tD
α
∗ u(x, t) =

1

Γ(1− α)

∫ t

0

[
∂u(x, τ)

∂τ

]
dτ

(t− τ)α
, 0 < α < 1 .

In the case α = 1 , the standard diffusion (heat equation) is recovered. In the
case 0 < α < 1 , we have to consider the previous time levels (non-Markovian
process).

Now discretize space and time at grid points and time instants:

xj = jh , h > 0 , j = 0,±1,±2, . . . ;
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tn = nτ , τ > 0 , n = 0, 1, 2, . . . , N ,

where h and τ are space and time steps, respectively. The dependent vari-
able u is then discretized (after multiplication of (1) by the spatial mesh
width h) by introducing yj(tn) as the intended approximation to∫ xj+h/2

xj−h/2

u(x, tn) dx ≈ hu(xj, tn) .

With the quantities yj(tn) so intended, we replace the time fractional
diffusion equation (1), by the finite-difference equation

tD
α
∗ yj(tn+1) =

yj+1(tn)− 2yj(tn) + yj−1(tn)

h2
, 0 < α ≤ 1 . (2)

As usual, we adopt a second-order central difference in space at level t = tn
for approximating the second-order space derivative. The time fractional
diffusion term is approximated by

tD
α
∗ yj(tn+1) =

1

Γ(1− α)

n∑
i=0

∫ (i+1)τ

iτ

y′j(tn+1 − r)

rα
dr

=
τ−α

Γ(2− α)

{[
yj(tn+1)− yj(tn)

]
+

n∑
i=1

[
yj(tn+1−i)− yj(tn−i)

][
(i + 1)(1−α) − i(1−α)

]}
. (3)

Thus, the discrete form of the equation (1) is[
yj(tn+1)− yj(tn)

]
+

n∑
i=1

[
yj(tn+1−i)− yj(tn−i)

][
(i + 1)(1−α) − i(1−α)

]
= µΓ(2− α)

[
yj+1(tn)− 2yj(tn) + yj−1(tn)

]
, (4)

where µ := τα/h2 . Rearranging, we obtain

yj(tn+1) = µΓ(2− α)yj+1(tn) +
[
2− 21−α − 2µΓ(2− α)

]
yj(tn)
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+ µΓ(2− α)yj−1(tn) +
[
2 · 21−α − 1− 31−α

]
yj(tn−1)

+
[
2 · 31−α − 21−α − 41−α

]
yj(tn−2)

+ · · ·+
[
2 · n1−α − (n− 1)1−α − (n + 1)1−α

]
yj(t1)

+
[
(n + 1)1−α − n1−α

]
yj(t0) . (5)

Introduce the coefficients

ck = 2k1−α − (k − 1)1−α − (k + 1)1−α , k ≥ 1 ,

bn = (n + 1)1−α − n1−α , n ≥ 0 . (6)

Then write equation (5) in the following discrete non-Markovian random
walk approximation, hereafter referred to as dnmrwa:

yj(tn+1) = bnyj(t0) +
n∑

k=1

ckyj(tn+1−k)

+ µΓ(2− α)
[
yj+1(tn)− 2yj(tn) + yj−1(tn)

]
. (7)

In particular,

for n = 0 ,

yj(t1) = yj(t0) + µΓ(2− α)
[
yj+1(t0)− 2yj(t0) + yj−1(t0)

]
;

for n = 1 ,

yj(t2) = b1yj(t0)+
[
c1−2µΓ(2−α)

]
yj(t1)+µΓ(2−α)

[
yj+1(t1)+yj−1(t1)

]
;

for n ≥ 2 ,

yj(tn+1) = bnyj(t0) +
n∑

k=2

ckyj(tn+1−k) +
[
c1 − 2µΓ(2− α)

]
yj(tn)

+ µΓ(2− α)
[
yj+1(tn) + yj−1(tn)

]
.
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For 0 < α < 1 , the coefficients (6) possess the properties

1 = b0 > b1 > b2 > b2 > · · · → 0 ,

ck = bk−1 − bk ,
n∑

k=1

ck = 1 + n1−α − (n + 1)1−α ,

∞∑
k=1

ck = 1 , 1 > 2− 21−α = c1 > c2 > c3 > · · · → 0 . (8)

Two propositions follow from equation (7), see [8] for further details.

Proposition 1 The term yj(tn+1) preserves non-negativity if all coefficients
are non-negative.

Hence, we require that the coefficient of the term yj(tn) be non-negative,
that is,

0 < µ =
τα

h2
≤ 1

Γ(2− α)

(
1− 1

2α

)
. (9)

The following result can be proved using mathematical induction [8].

Proposition 2 dnmrwa is conservative, that is,

+∞∑
j=−∞

|yj(t0)| < ∞⇒
+∞∑

j=−∞

yj(tn) =
+∞∑

j=−∞

yj(t0) , n ∈ N . (10)

Remark 3 Non-negativity preservation and conservation implies that our
scheme can be interpreted as a redistribution scheme of clumps yj(tn) [3].
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3 Stability analysis of DNMRWA

We now discuss the stability of the dnmrwa for tfde in a bounded do-
main [0, L] with the following initial and boundary conditions:

u(0, t) = u(L, t) = 0 , t ≥ 0 ,

u(x, 0) = f(x) , 0 < x < L . (11)

For the given initial and boundary conditions (11), equation (7) is expressed
in matrix form as{

Y1 = BY0 , n = 0 ,
Yn+1 = AYn + c2Yn−1 + c3Yn−2 + · · ·+ cnY1 + bnY0 , n ≥ 1 ,

(12)

where

Yn =


y1,n

y2,n
...

ym−1,n

 , A =


c1 − 2η η

η c1 − 2η η
. . . . . . η

η c1 − 2η

 ,

B =


1− 2η η

η 1− 2η η
. . . . . . η

η 1− 2η

 .

The matrices A and B are both tridiagonal of order m− 1 .

We now analyse the stability via mathematical induction. First assume
that the matrix B satisfies ‖B‖∞ ≤ 1 .

Next, when n = 1 , we have Y1 = BY0 ; thus

‖Y1‖∞ ≤ ‖B‖∞ · ‖Y0‖∞ ≤ ‖Y0‖∞ .
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Now assume that ‖Yk‖∞ ≤ ‖Y0‖∞ holds for n ≤ k . When n = k + 1 , we
have

‖Yk+1‖∞ = ‖AYk + c2Yk−1 + c3Yk−2 + · · ·+ ckY1 + bkY0‖∞
≤

[
‖A‖∞ + c2 + c3 + · · ·+ ck + bk

]
· ‖Y0‖∞ .

If we assume that µ ≤ (1− 2−α)/Γ(2− α) , that is, c1 ≥ 2η , then

‖A‖∞ + c2 + c3 + · · ·+ ck + bk = η + c1 − 2η + η +
∑k

i=2 ci + bk = 1 .

Thus, ‖Yk+1‖∞ ≤ ‖Y0‖∞ .

Also notice that when µ ≤ (1− 2−α)/Γ(2− α) , that is, c1 ≥ 2η , the ma-
trix B satisfies ‖B‖∞ ≤ 1 . We therefore conclude that, if µ ≤ (1− 2−α)/Γ(2− α)
for any natural number n, then ‖Yn‖∞ ≤ ‖Y0‖∞ . According to the Lax–
Richtmer definition of stability [12], the following theorem is obtained:

Theorem 4 When µ ≤ (1− 2−α)/Γ(2− α) , the dnmrwa (7) for the tfde
in a bounded domain is stable.

4 Convergence analysis of DNMRWA

The convergence of the solution of an approximating set of difference equa-
tions to the solution of a tfde can be investigated directly by deriving dn-
mrwa for the discretization error e. Denote the exact solution of the tfda
by U and the approximation solution of the dnmrwa by y . Then e = U−y .
We have adopted the dnmrwa (7) approximation to (1) with initial and
boundary conditions (11).

At the mesh points,

yj,n = Uj,n − ej,n , yj,n+1 = Uj,n+1 − ej,n+1 , . . . .



4 Convergence analysis of DNMRWA C497

It can be shown that the error vectors satisfy{
En+1 = AEn + c2En−1 + c3En−2 + · · ·+ cnE1 + M , n = 0, 1, . . . ,
E0 = 0 ,

(13)
where

En =


e1,n

e2,n
...

em−1,n

 , M =


ταΓ(2− α) · O (τ + h2)
ταΓ(2− α) · O (τ + h2)

...
ταΓ(2− α) · O (τ + h2)

 .

Now we use mathematical induction to analyse the convergence. We
intend to show that

‖En‖∞ ≤ nταΓ(2− α) · O
(
τ + h2

)
.

When n = 1 , we have ‖E1‖∞ = ‖M‖∞ = ταΓ(2− α) · O (τ + h2) . We now
assume that the above inequality holds for n ≤ k . Then, when n = k + 1 ,

‖Ek+1‖∞ = ‖AEk + c2Ek−1 + c3Ek−2 + · · ·+ ckE1 + M‖∞
≤

[
‖A‖∞ · k + c2 · (k − 1) + · · ·+ ck−1 · 2 + ck + 1

]
· ‖M‖∞.

If we assume that µ ≤ (1− 2−α)/Γ(2− α) , that is, c1 ≥ 2η , then ‖A‖∞ = c1 .
Thus,

‖Ek+1‖∞ ≤ [c1 · k + c2 · (k − 1) + · · ·+ ck−1 · 2 + ck + 1] · ‖M‖∞

≤
[
k ·

k∑
i=1

ci + 1
]
· ‖M‖∞

≤ (k + 1) · ταΓ(2− α) · O
(
τ + h2

)
.

As a result, if µ ≤ (1− 2−α)/Γ(2− α) for any natural number n, then
‖En‖∞ ≤ nταΓ(2− α) · O (τ + h2) . Note that nτ ≤ T is finite, nταΓ(2− α)
is also finite. So when τ → 0 , h → 0 , we have ‖En‖∞ → 0 , thus |ej,n| → 0 .

The following result therefore holds:
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Theorem 5 Let U be the exact solution of the tfde and y the approximate
solution of the dnmrwa; then y converges to U as h and τ tend to zero when
µ ≤ (1− 2−α)/Γ(2− α) .

Remark 6 We note that the condition for the convergence conforms with
the condition for stability, and it is also the scaling restriction (9) for the
random walk interpretation.

5 Numerical results

Consider the following time fractional diffusion equation

∂αu(x, t)

∂tα
=

∂2u(x, t)

∂x2
, 0 ≤ x ≤ 2 , t > 0 , (14)

with the initial and boundary conditions:

u(0, t) = u(L, t) = 0 , t ≥ 0 ,

u(x, 0) = f(x) =

{
2x , 0 ≤ x ≤ 1

2
,

4−2x
3

, 1
2
≤ x ≤ 2 .

(15)

The function f(x) represents the temperature distribution in a bar generated
by a point heat source kept at the point x = 1

2
for sufficiently long time.

By taking the finite sine transform and Laplace transform, the analytical
solution for equation (14) with the initial and boundary conditions (15) is [1]

u(x, t) =
2

L

∞∑
n=1

Eα(−a2n2tα) sin(anx)

∫ L

0

f(r) sin(anr) dr , (16)

where a = π/L , Eα(z) =
∑∞

k=0 zk/Γ(αk + 1) is the Mittag–Leffler function.
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Table 1: The analytical solution, numerical solution and errors for tfde at
t = 0.4 , α = 0.5 with h = 0.25 and τ = 0.0004

xi Exact Numerical Error
0.25 0.1114 0.1151 0.37E-02
0.50 0.1950 0.2048 0.97E-02
0.75 0.2360 0.2431 0.71E-02
1.00 0.2383 0.2404 0.20E-02
1.25 0.2018 0.2063 0.44E-02
1.50 0.1468 0.1497 0.28E-02
1.75 0.0773 0.0784 0.11E-02

Table 2: The analytical solution, numerical solution and errors for tfde at
t = 0.4 for α = 0.5 with h = 0.2 and τ = 0.0001

xi Exact Numerical Error
0.2 0.0905 0.0904 0.19E-03
0.4 0.1663 0.1677 0.14E-02
0.6 0.2168 0.2188 0.19E-02
0.8 0.2389 0.2356 0.83E-03
1.0 0.2383 0.2356 0.27E-02
1.2 0.2105 0.2115 0.99E-03
1.4 0.1709 0.1718 0.85E-03
1.6 0.1204 0.1207 0.31E-03
1.8 0.0622 0.0622 0.37E-04
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The analytical solution, numerical solution (dnmrwa) and errors for
tfde at t = 0.4 , α = 0.5 with h = 0.25 , τ = 0.0004 and with h = 0.2
and τ = 0.0001 are listed in Tables 1 and 2, respectively. Tables 1 and 2
show that the rate of convergence is O(τ + h2). Here

0 < µ =
τα

h2
≤ 1

Γ(2− α)

(
1− 1

2α

)
.

Now we present some results to demonstrate that the dnmrwa can be
applied to simulate the behavior of the solution of a fractional diffusion equa-
tion as the order of the fractional derivative is changed. Such a numerical
technique overcomes the problem of not being able to evaluate the analytical
solution for 0 < α ≤ 1 due to the nature of the Mittag–Leffler function.

Figure 1(a) shows the results of dnmrwa with h = 0.25 , τ = 0.0004 and
the analytical solution for tfde at t = 0.4 and α = 0.5 . It is apparent from
Figure 1(a) that the numerical solution (dnmrwa) is in good agreement
with the analytical solution. Figure 1(b) shows the evolution result using
dnmrwa with h = 0.25 , τ = 0.0004 for α = 0.5 . From Figure 1(b), see that
the α = 0.5 order derivative system exhibits fast diffusion in the beginning
and slow diffusion later.

Figures 2(a) and 2(b) compare the response of the diffusion system for
different real numbers 0 < α ≤ 1 at t = 0.4 and different x, and at x = 0.5
and different t, respectively. Here h and τ satisfy the restriction (9). Fig-
ure 2 shows that dnmrwa can be applied to solve fractional-order dynamical
systems.

6 Conclusions

The time fractional diffusion equation arises in a natural way when space-
probability distributions evolve in time consistently with the phenomenon
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Figure 1: (a) The analytical solution and the numerical solution at t = 0.4
for α = 0.5 ; (b) Evolution of the initial state of the numerical solution
(α = 0.5)
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Figure 2: (a) Displacement at t = 0.4 as a function of x for various α;
(b) Displacement at x = 0.5 as a function of t for various α.
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of slow anomalous diffusion. In this paper we have provided dnmrwa for
tfde, and we generate discrete models of a random walk approach to this
phenomenon. The dnmrwa possesses, with the scaling restriction (9) and
simulating on a discrete space-time grid, the essential properties of the con-
tinuous process, namely, conservation and preservation of non-negativity. We
also have proved that the scaling restriction is the condition for the stability
and convergence of our scheme for tfde in a bounded domain. The method
can be applied to solve fractional-order dynamical systems.
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