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Verifying convergence rates of discrete
thin-plate splines in 3D.

Linda Stals∗ Stephen Roberts∗
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Abstract

Traditional thin-plate splines use radial basis functions that pro-
duce dense linear system of equations whose size increases with the
number of data points. We present a discrete thin-plate spline method
that uses polynomials with local support defined on finite-element
grids. The resulting system of equations is sparse and its size depends
only on the number of nodes in the finite element grid. Theory is
developed for general d-dimensional data sets and model problems are
presented in 3D to study the convergence behaviour.

Contents

1 Introduction C517
∗Mathematical Sciences Institute, Australian National University, Canberra,

ACT 0200, Australia. mailto:stals@maths.anu.edu.au
See http://anziamj.austms.org.au/V46/CTAC2004/Stal for this article, c© Aus-

tral. Mathematical Soc. 2005. Published June 19, 2005. ISSN 1446-8735

mailto:stals@maths.anu.edu.au
http://anziamj.austms.org.au/V46/CTAC2004/Stal


Contents C517

2 Discrete thin-plate splines C518

3 3D interpolation spline C520

4 Model problems C522
4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C523

5 Example applications C525

6 Future research C528

References C528

1 Introduction

Thin-plate splines are commonly used for data fitting. The thin-plate spline
for a general domain Ω, as formulated by Wahba [6] and Duchon [2], is the
function, f , that minimises the functional

Jα(f) =
1

n

n∑
i=1

[
f(x(i))− y(i)

]2
+ α

∫
Ω

∑
|ν|=2

(
2

ν

)
(Dνf(x))2 dx , (1)

where ν = (ν1, . . . , νd) is a d-dimensional multi-index, |ν| =
∑d

s=1 νs , x is a
predictor variable in Rd, and x(i) and y(i) are the corresponding ith predictor
and response data value (1 ≤ i ≤ n). This particular formulation is valid
for d ≤ 3 , but more general formulation are available for higher dimensions
using higher order smoothing terms. The smoothing parameter α controls
the trade-off between smoothness and fit. In the limit α→ 0 the function f
becomes an interpolant. If α is large, f becomes very smooth but may not
reflect the data very well. The value of α may be automatically calculated
using generalised cross validation [6]. We have implemented this method and
are currently preparing a paper that documents the results.
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Often radial basis functions are used to represent f as they give an an-
alytical solution to the minimiser of the functional in Equation (1). See for
example [5] and the references mentioned there. The system of equations
resulting from the radial basis functions is dense and its size is directly pro-
portional to the number of data points. In applications with a large number
of data points the system is very expensive to compute.

Here we propose a discrete thin-plate spline method that uses polyno-
mial basis function with local support defined on a finite element mesh. The
resulting system of equations is sparse and its size depends only on the num-
ber of grid points in the finite element mesh. A preconditioned conjugate
gradient (cg) method is used to solve the system of equations.

This research is an extension of the work presented in [5] and focuses on
the formulation of a set of model problems to verify that the code is working
correctly and compares the results with the theory given in [4].

In Section 2 a description of the discrete thin-plate spline method is given
in d-dimensions. Section 3 formulates the resulting system of equations in 3D
and describes the cg method used to solve the system. A set of model prob-
lems is presented in Section 4 and some example applications are discussed
in Section 5.

2 Discrete thin-plate splines

Standard thin-plate splines require the solution of a dense linear system of
equations whose size increases with the number of data points. An alternative
approach uses finite element approximation of thin-plate splines [1, 3, 4].

The smoothing problem from Equation (1) is approximated with finite
elements so that the discrete smoother f is a piecewise multi-linear function.
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In vector notation f will be of the form

f(x) = b(x)Tc .

The idea is to minimise Jα over all f of this form. The smoothing term
is not defined for piecewise multi-linear functions, but the non-conforming
finite element principle is used to introduce piecewise multi-linear functions
u = (bTg1, . . . ,b

Tgd) to represent the gradient of f . The functions f and u
satisfy the relationship∫

Ω

∇f(x) · ∇v(x) dx =

∫
Ω

u(x) · ∇v(x) dx , (2)

for all piecewise multi-linear function v. This is equivalent to the relationship

Lc =
d∑

s=1

Gsgs , (3)

where L is a discrete approximation to the negative Laplace operator and
(G1, . . . , Gd) is a discrete approximation to the transpose of the gradient
operator.

In this formulation the boundary conditions are assumed to be Dirichlet.
If the values along the boundary Γh are unknown, then the data is placed
well inside the domain, away from the boundary, and c,g1, . . . ,gd are set
to zero along the boundary. This is consistent with a cubic spline fit with
clamped boundary conditions. Section 4 shows some model problems where
the values for c,g1, . . . ,gd along the boundary are known.

Now consider the minimiser of the functional

Jα(c,g1, . . . ,gd) =
1

n

n∑
i=1

[
b(x(i))Tc− y(i)

]2

+ α

∫
Ω

d∑
s=1

∇(bTgs) · ∇(bTgs) dx
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=
1

n

n∑
i=1

[
b(x(i))Tc− y(i)

]2
+ α

d∑
s=1

gT
s Lgs . (4)

Our smoothing problem consists of minimising this functional over all vectors
c,g1, . . . ,gd , defined on the domain Ωh, subject to Constraint (3).

3 3D interpolation spline

We now concentrate on the interpolation of 3D data sets.

In the 3D case the discrete minimisation problem (4) is equivalent to
finding the minimum of

Jα(c,g1,g2,g3) = cTAc−2dTc+yTy/n+α
(
gT

1 Lg1 + gT
2 Lg2 + gT

3 Lg3

)
, (5)

subject to
Lc−G1g1 −G2g2 −G3g3 = 0 . (6)

The matrices L, G1, G2 and G3 are independent of the data points but the
matrix

A =
1

n

n∑
i=1

b(x(i))b(x(i))T ,

and vector

d =
1

n

n∑
i=1

b(x(i))y(i) ,

must be assembled by sweeping through the data points. The matrix A is
symmetric indefinite and sparse.

Using Lagrange multipliers, rewrite the Minimisation Problem (5) as the
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solution of the linear system:
A 0 0 0 L
0 αL 0 0 −GT

1

0 0 αL 0 −GT
2

0 0 0 αL −GT
3

L −G1 −G2 −G3 0




c
g1

g2

g3

w

 =


d
0
0
0
0

−

h1

h2

h3

h4

h5

 , (7)

where w is a Lagrange multiplier associated with Constraint (6). The vectors
h1, . . . ,h5 store the Dirichlet boundary information.

One of the advantages of this approach is that the size of the linear
system depends on the discretisation size m instead of the number of the
data points n. All sub-systems in (7) have dimension m. The time required
to assemble the matrix does depend on n (that is, to build A and d) but it
depends only linearly on n and the observation data only have to be read
from secondary storage once if using a uniform finite element grid.

One way to solve Equation (7) is to eliminate all of the variables except g1,
g2 and g3, which givesαL+GT

1ZG1 GT
1ZG2 GT

1ZG3

GT
2ZG1 αL+GT

2ZG2 GT
2ZG3

GT
3ZG1 GT

3ZG2 αL+GT
3ZG3

g1

g2

g3



=

GT
1L

−1d
GT

2L
−1d

GT
3L

−1d

−
h2 +GT

1L
−1h

h3 +GT
2L

−1h
h4 +GT

3L
−1h

 , (8)

where matrix Z = L−1AL−1 , vector h = h1 − AL−1h5 and vector c =
L−1 (G1g1 +G2g2 +G3g3 − h5) .
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Table 1: Model problem specifications
Model Problem f(x) uj λ

1 ‖x‖2
2 2xj 0

2 x3
1 + x3

2 + x3
3 3x2

j −6α‖x‖1.
3 ‖x + [0.5, 0.5, 0.5]T‖2 (xj + 0.5)/f(x) −2α/f(x)
4 ‖x− [0.01, 0.01, 0.01]T‖2 (xj − 0.01)/f(x) −2α/f(x)

4 Model problems

To study the convergence behaviour of the finite element formulation, and
verify that the code is working correctly, a set of model test problems were
devised.

View the system of equations given in (7) as the discrete form of

1

n

n∑
i=1

f(x(i))ψ(x(i)) +

∫
Ω

∇λ∇ψ =
1

n

n∑
i=1

y(i)ψ(x(i)), (9)

α

∫
Ω

∇uj∇vj +

∫
Ω

∂jλ vj = 0 , for all j = 1, 2, 3 ,∫
Ω

(∇f − u)∇v = 0 ,

for all ψ, v, vj ∈ H1
0 . We assume that f and uj have Dirichlet boundary

conditions. Functions f and u such that ∆f = 0 , u = ∆f with y(i) = f(x(i))
and λ = −α∇2f satisfy (9). To find the boundary conditions of w needed
in (8) we let b(x)Tw be the discrete approximation to λ.

In the following experiments the data points x(i) (1 ≤ i ≤ n) sit in the
unit cube on the lattice found by dividing the cube into 16× 16× 16 equally
spaced sub-cubes.

Table 1 gives a list of model problems with ∇4f = 0 . For these specific
examples u1 = u2 = u3 .
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Table 2: Convergence results for Model Problem 1. The convergence results
labelled by (*) indicates that the error is only due to the iterative solver.

m ‖f(x)− f̂(x)‖L2 log2(Conv) ‖ui − ûi‖L2 log2(Conv) cg
65 2.23× 10−2 5.93× 10−6 3

369 6.54× 10−3 1.8 3.23× 10−6 (*) 5
2465 1.76× 10−3 1.9 2.73× 10−7 (*) 6

17985 4.42× 10−4 2.0 8.45× 10−7 (*) 7
137345 1.10× 10−4 2.0 2.17× 10−7 (*) 7

Table 3: Convergence results for Model Problem 2.

m ‖f(x)− f̂(x)‖L2 log2(Conv) ‖ui − ûi‖L2 log2(Conv) cg
65 3.40× 10−2 2.44× 10−2 3

369 1.02× 10−2 1.7 7.25× 10−3 1.8 6
2465 2.79× 10−3 1.9 1.93× 10−3 1.9 6

17985 7.06× 10−4 2.0 4.86× 10−4 2.0 7
137345 1.75× 10−4 2.0 1.21× 10−4 2.0 7

4.1 Results

For all of the model problems the stopping criterion of the cg method
was 10−8. The model problems are very smooth and our conclusions are
typical for a wide range of α so we have only tabulated results for α = 1 .
The finite element grid size ranges from h = 7.07107×10−1 for 65 grid nodes
to h = 4.41942× 10−2 for 137345 grid nodes.

Tables 2, 3, 4 and 5 list the L2 error norm for the model problems given
in Table 1. The values labelled f̂ and û are the approximations to f and u.

Referring back to Equation (9), if f , u are in H2 the expected standard
finite element convergence rates of O(h2) apply. The results given in the
column labelled ‘Conv’ in Tables 2, 3 and 4 show the expected O(h2) con-
vergence rate. In Model Problem 1 u is a linear function and is represented
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Table 4: Convergence results for Model Problem 3.

m ‖f(x)− f̂(x)‖L2 log2(Conv) ‖ui − ûi‖L2 log2(Conv) cg
65 4.38× 10−3 1.68× 10−3 3

369 1.40× 10−3 1.7 5.64× 10−4 1.6 5
2465 3.39× 10−4 2.0 1.64× 10−4 1.8 6

17985 1.00× 10−4 1.8 4.25× 10−5 2.0 7
137345 2.50× 10−5 2.0 1.07× 10−5 2.0 7

Table 5: Convergence results for Model Problem 4. The convergence result
labelled (-) indicates that the error is due to a singularity.

m ‖f(x)− f̂(x)‖L2 log2(Conv) ‖ui − ûi‖L2 log2(Conv) cg
65 6.60× 10−3 5.99× 10−2 3

369 2.72× 10−3 1.3 9.98× 10−3 2.6 5
2465 8.96× 10−4 1.6 1.57× 10−3 2.7 6

17985 2.49× 10−4 1.9 6.22× 10−4 1.3 7
137345 6.57× 10−5 1.9 6.34× 10−4 (-) 7

exactly by the linear basis functions, the errors reported in Table 2 are from
the linear solver.

The column labelled ‘cg’ gives the number of conjugate gradient itera-
tions required to solve the linear system to the given tolerance. For these
model problems the solver worked very well and only showed slight depen-
dence on the grid size m.

Table 5 shows the errors for Model Problem 4. For this example there is
a singularity at the point (0.01, 0.01, 0.01) and its effect is seen in the errors
for u. As f ∈ H5/2 we expect f to still demonstrate second order accuracy,
but û should converge to a projection of u onto a smoother space H2 (at least
away from the data points). Hence we do not expect the discrete gradient
to converge to u. An important point to note is that our finite element grid
does not have a node at the point (0.01, 0.01, 0.01).
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Figure 1: Iso-surface plot of the sphere on a grid with 189 and 68705 nodes.

5 Example applications

We now briefly present some examples of data fitting in 3D. For these exam-
ples f is unknown so the data is placed well within the interior of the domain
and the boundary conditions assumed to be zero. The tolerance used for the
stopping criterion for the linear solver is 10−3. A fairly high tolerance is cho-
sen for these examples as we are only interested in the visual output. The
values of α were chosen by trial and error.

The first data set contains 106 points generated randomly on a sphere
with centre (0.5, 0.5, 0.5) and radius 1/3. The data points are assigned a
value of 1. The smoothing parameter α is set to 10−3. Figure 1 shows an iso-
surface plot of the discrete thin plate spline with 189 nodes and 68705 nodes
respectively.

The next data set is designed to represent the case where there is missing
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Figure 2: Iso-surface representation of the original data set for the semi-
sphere example and approximation on a grid with 68705 nodes.

data. Specifically, we take the data from the example described above and
remove all of those points with x-coordinate less than 0.5. See Figure 2.
The data set contains approximately 1/2× 106 points. Note that the spline
attempts to fill in the missing data. The value for α is set to 10−3.

In the final example an ‘inner layer’ of data points are added to force
the discrete thin plate spline approximation to more closely follow the shape
of the semi-sphere. Along with the data points from the previous example,
additional data points sitting on the semi-sphere with centre (0.5, 0.5, 0.5)
and radius 1/6 are added and given a value of 0. See Figure 3. There are
approximately 2 × (1/2 × 106) data points. The smoothing parameter α is
reduced to 10−7.
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Figure 3: Iso-surface representation of the original data set for the semi-
sphere example with an additional layer of data points placed in the interior
and the approximation on a grid with 68705 nodes.
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6 Future research

Other options that we wish to explore include: the use of higher-order finite
element basis functions, adaptive grid refinement, different solution tech-
niques, automatic calculation of α and different boundary conditions.
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