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The method of particular solutions for the
Helmholtz equation
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Abstract

We have previously showed that the advection-diffusion equation
in steady hill-slope seepage problems can be reduced to the solution
of the Helmholtz equation in two dimensions. Initially, solutions were
found using an analytic series method (or the method of particular
solutions). However, the accuracy of these solutions is limited by
ill-conditioning in the set of basis functions as the number of basis
functions increases. Here we show that these problems are overcome
by choosing a different set of basis functions and modifying the method
of particular solutions as suggested by Betcke and Trefethen. The
different methods are tested on a number of simple domains. In most
cases spectral convergence is obtained for the eigenvalue.
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1 Introduction

The Method of Particular Solutions (mps) has been used to solve partial dif-
ferential equations such as the Helmholtz equation ∆φ = −λφ on a domain P
with φ = 0 on ∂P . Perhaps the best known application of this method is
that of Fox, Henrici and Moler [1]: they applied the method to the L-shaped
domain, and the result features in the well-known Matlab logo.

Our interest comes from seeking solutions to the advection-diffusion equa-
tion describing contaminant transport in hill-slope seepage problems on an
irregular domain. Read, Sneddon and Bode [2] showed that under certain
conditions, the solution of this equation can be reduced to finding solutions of
the Helmholtz equation on the domain. In that paper we used an “Analytic
Series Method” to solve the equation. This was effectively the mps.

Betcke and Trefethen [3] suggested a modified approach to this problem
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(the Modified Method of Particular Solutions or mmps). In Sections 2 and 3
these approaches are described and different sets of basis functions presented.
In Section 4 these different approaches are compared by solving the Helmholtz
equation on simple domains such as the equilateral triangle, the semicircle
and various parabolic shapes.

2 Analytic series method

In [2] we considered the advection-diffusion equation in steady hill-slope seep-
age problems. We showed that if analytic approximations for the hydraulic
head Φ(X, Y ) and the conjugate stream function Ψ(X, Y ) are available, and
if the magnitude of the stream velocity is approximately constant, then the
solution of the equation could be reduced to solving

∇2φ(x, y) + λφ(x, y) = 0 , (1)

in transformed coordinates x and y.

For a given value of λ, solutions of equation (1) can be found using separa-
tion of variables in either Cartesian or polar coordinates. Given a domain P
with boundary ∂P , we choose a set of such elementary functions {vk(x, y)}
that satisfy (1). We then look for a solution of the form

φ(x, y) =
∞∑

k=1

akvk(x, y) , (2)

which is zero on the boundary ∂P . In many cases the vk(x, y) themselves
can be chosen to be zero on some parts of the boundary and it remains to
choose the ak so that φ is zero on a single curve y = f t(x) .

In practice, we truncate the sum in (2) after N terms and collocate at N
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Figure 1: Domains for the five test problems of [2].

points xi, i = 1, . . . , N , along this curve. That is

N∑
k=1

akv
t
k(xi) = 0, for i = 1, . . . , N , (3)

where vt
k(xi) = vk(xi, f

t(xi)) . In matrix form V ta = 0 , where V t
ik = vt

k(xi)
and (a)k = ak . In general V t will depend on λ and must be singular to allow
a non-zero solution for a. We assume that this can only occur when λ is an
eigenvalue or natural frequency of the Helmholtz equation (1), and (2) is an
eigenfunction.

The method was initially applied to a region contained within the unit
square with boundaries x = 0 , x = 1 , y = 0 and

y = w + 4(1− w)x(1− x) , w = 0 : 0.25 : 1 . (4)

The five domains are shown in Figure 1. In the case w = 1 the solution that
is zero on each of the boundaries is known to be φ(x, y) = sin kπx sin mπy .
For this reason we chose the basis functions

vk(x, y) = sin kπx

{
sin γky , k ≤ n0 ,
sinh γky/ cosh γk , k > n0 ,

(5)
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with γ2
k = |λ − k2π2| and n0 = b

√
λ/πc . This choice of basis functions was

suitable for values of w . 1 . However there were difficulties for values of w
close to zero. These difficulties were partly due to the requirement that even
in the case w = 0 , the solution (2) will still be zero along the lines x = 0 and
x = 1 , as well as on the upper boundary. The presence of the sinh function
for large values of N also meant that the functions themselves were not well-
conditioned. For these reasons, a different set of basis functions is adopted
for the purpose of the comparisons in Section 4.

The functions used still have the form sin ckx sin dky , but instead of ck

being required to be kπ with k an integer, ck and dk are chosen to be the com-
ponents of a vector with magnitude

√
λ. The directions of the vectors (ck, dk)

could be chosen to be evenly distributed between 0 and π/2. Thus

ck =
√

λ cos θk , dk =
√

λ sin θk , k = 1, . . . N , (6)

with θk = πk/(2N) . Initially, we are interested in solutions that are sym-
metric about x = 0.5 . Therefore, the functions actually chosen are

vk(x, y) = WN,k(x, y) = cos ck(x− 0.5) sin dky . (7)

There is one further advantage in choosing the functions (7). The two
dimensional Fourier transform, F (ω, σ), of any solution of (1) will be zero
except on the curve ω2 + σ2 = λ . If φ is a sum of the terms (7), then the
coefficients of the sum will give the value of the transform (apart from a
phase factor) along this curve. This can be used as an independent check of
the values of these coefficients.

3 The modified method

The method described above is essentially the mps described by Fox et al. [1],
the main difference being that they used combinations of Bessel functions and
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sine functions for their basis functions. Recently Betcke and Trefethen [3]
drew attention to some of the problems with this method. These problems
are related to the ill-conditioning of the vk over the domain and the fact that
there will be solutions for a for which φ(x, y) will be almost zero throughout
the domain. Their resolution of this problem was to extend the matrix V t

so that it includes values of the basis functions at points in the interior of
the domain as well as on the boundary. In addition they evaluated the basis
functions at more than N points on the boundary. In their notation, they
constructed the matrix

A(λ) =

[
AB(λ)
AI(λ)

]
. (8)

The matrix AB(λ) is the same as the matrix V t used previously, except that it
will have more rows, corresponding to the larger number of boundary points.

An orthonormal basis of A(λ) can be found using an “economy size”
QR decomposition of A. Hence

A(λ) =

[
QB(λ)
QI(λ)

]
R , (9)

where R is a square upper triangular matrix. The boundary conditions will
be satisfied (approximately) if λ is chosen so that the smallest singular value
of QB(λ) is a minimum. Once λ is determined, the coefficients in the expan-
sion (2) are chosen to satisfy AB(λ)a = QB(λ)Ra ≈ 0 . This will be the case
if Ra = u where u is the right singular vector of QB corresponding to the
smallest singular value. This approach ensures that the solution for φ(x, y)
is non-zero inside the domain.

Betcke and Trefethen initially applied this method to the L-shaped region
of Figure 2. The re-entrant corner at the origin in Figure 2 is singular in the
sense that α = π/ϑ is not an integer. Consequently, the solution cannot be
analytic there. For this reason the solution was expanded in terms of Bessel
functions centred at the origin. The choice

vk(r, θ) = Jαk(
√

λ r) sin αkθ (10)
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Figure 2: The L-shaped domain.

ensures that each of the basis functions are zero on those parts of the bound-
ary along x = 0 and y = 0 . The coefficients a and λ could be chosen as
described above in order that the solution would be approximately zero on
the remaining parts of the boundary.

In Section 4 these functions are used to find solutions on simple domains.
Since we are interested in the solutions that are symmetric about x = 0.5 ,
the functions used are

vk(r, θ) = Bα,k(r, θ) = Jαk(
√

λ r) sin αkθ + Jαk(
√

λ r′′) sin αkθ′′ , (11)

where the meaning of the symbols is shown in Figure 3. The symbols r′ and θ′

are used in Section 4.2

4 Comparison of methods

In this section, the different choices of basis functions are each used on some
simple domains to check the convergence of the methods with N and to see if
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Figure 3: Symbols used to define Bα,k.

any method is significantly better than the other. The mmps is used with 20
boundary points and 20 interior points chosen at random. The comparison
is made between the sets of basis functions WN,k and Bα,k and another set
yet to be described.

4.1 Equilateral triangle

The method can be applied to the equilateral triangle with vertices at (0, 0),
(1, 0) and (1/2,

√
3/2). The solution for the fundamental mode is

φ(r) = sin
√

λ k1 · r + sin
√

λ k2 · r + sin
√

λ k3 · r , (12)

with k1 = (0, 1) , k2 = −1
2
(
√

3, 1) , k3 = 1
2
(
√

3,−1) and λ = 16π2/3 (see [4]
for a recent discussion). The errors in the calculated eigenvalue are shown in
Figure 4 for both sets of eigenfunctions. In view of the nature of the exact
solution, it is no surprise that the wave functions give extremely accurate
results when N is a multiple of 3. The eigenvalue and the solution are
obtained to machine precision.
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Figure 4: The relative error in λ versus N for the triangular domain. The
dashed line is for WN,k and the solid line for Bα,k.

For the expansion in Bessel functions, α = π/(π/3) in this case, and so the
Bessel functions to be used in the series are J3k. In general, this expansion is
more accurate than the plane wave expansion except when N is a multiple
of 3. The stepped nature of the graph of the error against N is a surprise
initially. Furthermore, the coefficients of the expansion are zero for even
values of k and the remainder appear to be equal to each other. This feature
can be explained by writing each term in (12) as sin

(√
λ r sin(θ + 2nπ/3)

)
and using the identity sin(z sin θ) =

∑∞
k=−∞ Jk(z) sin(kθ) . Equation (12)

becomes

φ(r) =
∞∑

k=−∞

(
sin kθ + sin k(θ + 2π/3) + sin k(θ + 4π/3)

)
Jk(

√
λ r) . (13)

Terms where k is not a multiple of 3 will vanish. Also, the kth term will
either be equal to the −kth term or will cancel with it. Thus

φ(r) = 6
∞∑

k=1

sin 3(2k − 1)θ J3(2k−1)(
√

λ r) . (14)
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Figure 5: The relative error in λ versus N for the semicircular domain. The
dashed line is for WN,k, the solid line for Bα,k and the dotted line for Bp

α,k.

The same result is obtained using the Bessel functions centred at (1, 0), thus
verifying the result obtained numerically that φ(r) = 3

∑∞
k=1 B3,2k−1(r) .

4.2 Semicircle

For the semicircle with radius 1
2

and centre (1
2
, 0), the fundamental solution is

φ(r) = J1(
√

λ r′) sin θ′ , with
√

λ/2 the first zero of J1. The Fourier transform
of this function (shifted so that the centre is at the origin rather than at (1

2
, 0))

is zero except on the circle ω2 +σ2 = λ , where it is proportional to sin β with
β = arg(ω+iσ) . The convergence to the eigenvalue using the functions WN,k

is shown in Figure 5. For fewer than 12 functions in the expansion, the values
of the coefficients ak closely match the values of sin(πk/(2N)). For larger
values of N , these coefficients showed large variability and huge oscillations,
although this did not always affect the calculation of the eigenfunction. This
feature has also been noted by Betcke and Trefethen.

Unlike the previous example, the boundary is not composed of straight
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line segments. However, the angle (with the tangent) at the corners is π/2
and so we take α = 2 . The final solution itself will not be forced to be zero
along these tangent lines (x = 0 and x = 1) as the contribution from the
Bessel function centred at the opposite corner will be non-zero along these
lines. Nevertheless, the convergence using the Bessel functions is worse in
this example.

In order to determine the reason for this relatively poor performance, the
solution J1(

√
λ r′) sin θ′ can be expanded in terms of Bessel functions centred

on the origin. Using

Jn(
√

λr′)einθ′
=

∞∑
k=−∞

Jk−n(
√

λ/2)Jk(
√

λr)eikθ ,

it follows that

J1(
√

λr′) sin θ′ =
∞∑

k=1

(
Jk+1(

√
λ/2) + Jk−1(

√
λ/2)

)
Jk(

√
λr) sin kθ(15)

=
4√
λ

∞∑
k=1

kJk(
√

λ/2)Jk(
√

λr) sin kθ . (16)

A similar expansion can be developed in terms of Bessel functions centred
about (1, 0). The main difference between the series (16) and a series of
the functions Bα,k is that the former includes all Bessel functions with order
greater than 1, whereas the latter series has only the even order Bessel func-
tions. According to (16) the Taylor expansion near the origin should contain
all powers of r greater than 1, but the Bα,k contain only even powers. This
suggests that an expansion in Bessel functions should contain the functions

Bp
α,k(r, θ) = Jα+k(

√
λ r) sin(α + k)θ + Jα+k(

√
λ r′′) sin(α + k)θ′′ . (17)

This expansion has been carried out and the result, shown in Figure 5, is a
considerable improvement on the Bα,k expansion, but still not as good as the
WN,k expansion.
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Figure 6: Convergence of the eigenvalue for y = x(1−x) and y = 4x(1−x)
respectively for WN,k (dashed line), Bα,k (solid line) and Bp

α,k (dotted line).
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4.3 Parabolic boundaries

Lastly, the method is applied to regions with a parabolic upper boundary.
The two cases chosen are the regions bounded by y = x(1 − x) and y =
4x(1−x) . The latter corresponds to the curve w = 0 in Figure 1. The results
are shown in Figure 6. In each of these cases, the solution was not known in
advance, and so the eigenvalue had to be deduced from the numerical results.
For the curve y = x(1− x) , expansions in WN,k and Bp

α,k both converged to
the same value with almost machine accuracy. Again the expansion in Bα,k

did not converge as rapidly, for reasons outlined above.

For the curve y = 4x(1− x) , expansions in WN,k were slow to converge.
The likely explanation for this is that the corner at (0, 0) is singular in this
case. This means that the solution will not be analytic at that point. On the
other hand, the functions WN,k are themselves analytic everywhere, and so
will not be able to match the solution accurately. The functions Bα,k perform
marginally better because the first term, Bα,1 with α = π/ arctan(4) , will
match the first term, rα, in the series at r = 0 . However, the remaining
functions in the expansion will not be able to match terms such as rα+1.
The expansion in Bp

α,k performs significantly better than both of these. The
most likely reason for this is that these functions are better able to match
the powers of r at the corners.

5 Conclusion

The modified method of particular solutions can give extremely accurate
solutions for equations such as the Helmholtz equation. However, different
choices of basis function lead to quite different convergence properties. We
found that the functions Bp

α,k provided a better approximation than Bα,k, at
least where the sides adjacent to the corners were not straight line segments.
Where the solution was analytic, the functions WN,k were also very good,
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but in cases where the solution was not analytic, they performed poorly.

In summary, it appears from these results that choosing the basis func-
tions to match the boundary conditions near corners may not be as important
as choosing functions that will be able to approximate the solution at those
points where it is not analytic.
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