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Optimal sample length for calculating transfer
functions from discrete experimental data
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Abstract

Transfer functions are useful tools in observing the behaviour of
non-linear systems. Transfer functions convert an input signal into an
output signal, and for non-linear systems can be calculated separately
for each order of response using the Volterra series. The Volterra
series quantifies the linear and non-linear responses separately for sys-
tems with either Gaussian or non-Gaussian inputs, and is particularly
useful when calculating transfer functions from experimental data, as
the calculations can be performed using a discrete frequency domain
format. The application of the Volterra series to discrete experimen-
tal data requires careful consideration of various factors that impact
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on the successful calculation of transfer functions. The single largest
problem faced when using discrete experimental data is the difficultly
presented when determining the optimal sample length of the data
adopted during the calculation process. Equal lengths of sample data
are extracted from each individual record to calculate averaged input
and output spectra. When using experimental data of finite record
length, a trade off between the number of sample lengths obtained
from each record and the frequency interval of the resulting transfer
functions occurs. Here we explore those factors that lead to the selec-
tion of an optimal sample length. We begin with an overview of the
Volterra series approach, and how experimental data can be used to
calculate transfer functions. The factors that influence the selection of
the optimal sample length are described and methods outlined that en-
sure the most meaningful results are obtained. We demonstrate these
methods using the results from an experimental procedure performed
on a model Tension Leg Platform.
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1 Introduction

Transfer functions are particularly useful in observing non-linear behaviour,
as they convert an input signal into output signals at each order of response.
In the time domain, an input signal is convolved with an impulse response
transfer function to give the output signal. In the frequency domain an input
spectrum is simply multiplied by a frequency response transfer function to
give the output spectrum [3]. Usually, convolution in the time domain is com-
putationally intensive making the use of transfer functions in the frequency
domain is more attractive.

The Volterra series usefully solves for transfer functions from discrete
experimental data. This approach allows the quantification of the linear
and non-linear (for example, quadratic, cubic, etc.) components separately.
Section 2 overviews the Volterra series, including its origin and development
to its most general form. When it is extended to discrete experimental data,
selection of the optimal sample length for treatment in the Volterra series
becomes critical. Two opposing factors that influence the size of the sample
length are discussed in Section 3: the number of sample lengths that can be
obtained from a finite record; and the size of the frequency interval of the
resulting system. One technique that is successful in ensuring the minimal
number of expected values required to form an accurate solution is principal
component analysis. Section 4 outlines this technique and its application
to the Volterra series. Finally, in Section 5, results from an experimental
procedure on a model Tension Leg Platform (tlp) demonstrate the outlined
methods.

2 The Volterra series

Tick [5] was the first to calculate transfer functions using a modified version
of Volterra’s series that used input (X(f)) and output (Y (f)) spectra, as
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opposed to time series inputs first proposed by Volterra. Tick calculated
transfer functions from cross-power spectra and cross-bispectra, although the
work was limited to Gaussian excitations and the output was calculated up
to the second-order response only. The Volterra series up to the Nth order,
in a continuous frequency domain form [4], is

Y (f) =

∫ ∞

−∞
H1(f1)X(f1)δ(f − f1) df1

+

∫ ∞

−∞

∫ ∞

−∞
H2(f1, f2)X(f1)X(f2)δ(f − f1 − f2) df1 df2

+ · · ·

+

∫ ∞

−∞
· · ·

∫ ∞

−∞
HN(f1, . . . , fN)X(f1) . . . X(fN)δ(f − f1 · · · − fN) df1 . . . dfN ,

(1)

This equation calculates the total output spectrum (Y (f)) from the input
spectrum (X(f)) multiplied by transfer functions at each order of response,
where

• H1(f1) is the first-order frequency response transfer function,

• H2(f1, f2) is the second-order frequency response transfer function,

• HN(f1, . . . , fN) is the Nth order frequency response transfer function,
and

• δ(·) is the Dirac delta function.

Using vector notation, define a row vector H2(f) as a collection of all
the second-order transfer functions at discrete frequency pairs, H2(f1, f2) for
example, where f1 + f2 = f . The row vector HN(f) is a collection of all
the Nth order transfer functions at discrete frequencies, HN(f1, f2, . . . , fN)
for example, where f1 + f2 + · · · + fN = f . Similarly, define the input
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spectra in terms of column vectors, where X2(f) is a collection of all the
pairs of inputs X(f1)X(f2), where f1 + f2 = f . And finally, the column
vector XN(f) is a collection of all the inputs X(f1)X(f2) · · ·X(fN) , where
f1 + f2 + · · · + fN = f . Using these vectors express Equation (1) in matrix
form as

Y (f) = H(f)X(f) + ε(f) , (2)

where

H(f) =
[
H1(f) H2(f) · · · HN(f)

]
,

X(f) =


X1(f)
X2(f)

...
XN(f)

 .

When solving Equation (2) determine the optimum transfer functions
by minimising the modelling error ε(f) between the observed output Y (f)
and the model output (calculated by H(f)X(f)). In particular, since the
Volterra model is linear with respect to the transfer functions, apply the
method of least squares. This requires Equation (2) to be multiplied by
the complex conjugate of the input vector X∗(f) and the expected values
of each side of the equation to be found. The function E[·] describes an
expected value or statistical averaging process, where an estimate of the
density function is determined by obtaining an average of a data record from
numerous short segments. The superscript T denotes the transpose of the
vector to give

E[X∗(f)Y (f)] = E[X∗(f)XT (f)]HT (f) . (3)

When E[X∗(f)XT (f)]−1 exists, rearrange Equation (3) into the form

HT (f) = E[X∗(f)XT (f)]−1E[X∗(f)Y (f)] . (4)
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3 The optimal sample length

Typically, for discrete data (whether computer generated or obtained from
experiments), inaccuracies occur when the Fourier transform maps the data
from the time to the frequency domain. However, the nature of discrete data
means that unlike a continuous system, a finite record of discrete data is
collected at specific values a constant width apart. Due to these character-
istics, spectral leakage occurs when the response lies between the frequency
intervals of the transformed data.

Whereas the general trend of the real signal can be observed, by digitising
the system, the exact solution is lost. One process that can reduce spectral
leakage is windowing, where the use of tapered windows reduces the influence
of the tails of the discrete data [2]. However, windows are largely developed
for linear systems, and while research continues into a form applicable to
non-linear systems, herein no windows are used on the data. So, the smaller
the frequency interval the lower the influence of spectral leakage, and a more
accurate observation of the characteristics of the system can be made.

For experimental data, noise causes additional inaccuracies. Therefore,
a way to alleviate this problem is to find the expected value of the input
and output spectra. When calculating the transfer functions using Equa-
tion (4) an expected value is taken to form the matrices E[X∗(f)XT (f)]
and E[X∗(f)Y (f)]. This ensures the final representation of these matrices
is an averaged or expected value of all the data lengths available. The more
sample lengths used to form the expected value, the greater the confidence
that can be placed upon the response.

However, herein lies the problem of determining the length of data taken
from a fixed length record required to form the sample lengths. When dealing
with discrete experimental data, the total record lengths are always finite.
Therefore, the choice of the optimal sample length is based around a trade off
between small enough frequency intervals versus obtaining sufficient sample
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lengths from a record of finite length for adequate spectral representation.

4 Principal component analysis

One technique that can result in significant savings in the number of expected
values required to obtain an accurate result is the use of principal component
analysis to invert the input matrix E[X∗(f)XT (f)] used in Equation (4).
The near singularity of the matrix means that directly inverting it rarely
leads to actual solutions. An alternative approach suggested by Birkelund et
al. [1] is that principal component analysis be used to solve for the inverse of
the input matrix E[X∗(f)XT (f)]. Since the matrix is Hermitian, decompose
it into the form

E[X∗(f)XT (f)] = UDUH , (5)

where the superscript H represents the Hermitian of the matrix. Denoting
the eigenvalues by λi and the corresponding eigenvectors by ui, matrix D =
diag {λ1, λ2, . . . , λn} and the unitary matrix U = [u1, u2, . . . ,un].

The form of the matrix is such that many of the columns are very
nearly linearly dependent, identified by the small magnitude of the columns’
eigenvalues. Subsequently, if those eigenvalues (and corresponding eigen-
vectors) that are deemed to be very nearly linearly dependent are removed
from the matrix, then only those components that have a significant im-
pact are retained. The remaining eigenvalues and eigenvectors (represented
by Dr and U r respectively, where the subscript r represents the number of
columns retained) are used to approximate the matrix as

E[X∗(f)XT (f)] ≈ U rDrU
H
r , (6)

so that
E[X∗(f)XT (f)]−1 ≈ U rD

−1
r UH

r . (7)
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There is a direct link between the magnitude of an eigenvalue and the
relative percentage of the variance that the eigenvalue and corresponding
eigenvector account for in the matrix. So by utilising only the significant
eigenvalues and eigenvectors to estimate the matrix, all the nearly linear
dependent components will be removed. Birkelund et al. [1] obtained sig-
nificantly better results when using principal component analysis to invert
the input matrix in the Volterra series. In particular, they found that the
method reduces the number of sample lengths required to achieve an ade-
quate convergence in the relative squared error term. This is due to the fact
that when the matrix is inverted, the use of principal component analysis
eliminates effects of near singularity of the matrix, and subsequently gives a
fair representation of its inverted form.

5 Results

To investigate the Volterra series using principal component analysis, and the
impact of the sample length on the transfer functions, data was collected from
an experimental procedure performed on a Tension Leg Platform (tlp). tlps
are a type of offshore structure that contains a buoyant platform (consisting
of pontoons and columns) connected to the seabed by four tendons located
at each corner of the platform. This design is more flexible than traditional
jacket based offshore structures, and as a consequence it has been found
that due to second-order effects a non-linear sum-frequency response occurs
at the heave natural frequency. As part of an investigation into identifying
this phenomenon, a model tlp was subject to regular and irregular waves
in the testing facilities at the Institute for Marine Dynamics in Canada.
Typically, each test contained 25,000 data points taken at a time interval
of 0.02 seconds. The input data was taken as the wave height profile, and
the output data as the vertical (heave) displacement. To verify the test
results, a specialised computer program, wamit, was used to model the tlp
under wave loading. wamit is a second-order radiation/diffraction program
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Table 1: The correlation coefficients between the experimental results of
different sample lengths and the wamit results for the linear transfer func-
tions.

Sample length Correlation coefficient
256 0.056
512 0.092
1024 0.591
2048 0.450

developed for the analysis of the interaction of surface waves with offshore
structures. It has been successful in offshore research to predict the response
of model and prototype structures.

When dealing with dynamic systems that typically display a peak value at
the natural frequency, the frequency resolution must be adequate to ensure
the characteristics are sufficiently captured by the transfer functions. To
demonstrate the impact of using different sample lengths, the linear transfer
functions for the model are shown in Figure 1 while the correlation coefficients
between the experimental and wamit results are listed in Table 1. These
transfer functions are based on an average of the entire regular and irregular
wave tests. See in Table 1 that for the linear transfer functions a sample
length of 1024 provides the best representation of the system’s characteristics
when compared to the wamit results. That is, the frequency resolution for
sample lengths of size 256 and 512 are too coarse and the peak value at the
natural frequency is not captured. Longer sample lengths (of size 2048 and
possibly greater) would likely not provide a sufficient number of individual
samples when finding the expected values necessary to reduce the effects of
noise, for the record lengths collected in this investigation.

Principal component analysis assists with the calculation of the transfer
functions. Note: in Figure 1 when the size of the sample length was in-
vestigated, principal component analysis was used, in which all eigenvalues
higher than 0.005 times the maximum eigenvalue were retained. If the ma-
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Figure 1: Linear transfer function calculated with varying sample lengths.

Table 2: The correlation coefficients between the experimental results with
a different number of principal components retained and the wamit results
for the linear transfer functions.

Size of principal components retained Correlation coefficient
0.01 0.481
0.005 0.591
0.001 0.280
0.0005 0.338
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Figure 2: Linear transfer function calculated with a varying number of
eigenvalues retained.
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trix E[X∗(f)XT (f)] was inverted directly, the near singularity of the matrix
would mean the results would be meaningless (and were found to be around
1010 times larger in magnitude). However, the number of eigenvalues to be
retained can also influence the form of the transfer functions. The number
of eigenvalues to be retained was determined by comparing individual eigen-
values to the maximum eigenvalue. From Figure 2 and Table 2, it is possible
to see that the best results arise from when those eigenvalues that are larger
than 0.005 times the maximum are retained.

Therefore, using the generalised Volterra series, with principal component
analysis to invert the input matrix with eigenvalues greater than 0.005 times
the maximum retained, and a length of 1024 data points used to form individ-
ual samples, the resulting linear and quadratic transfer functions are shown
in Figures 3 and 4 respectively. In these graphs the irregular wave tests are
depicted by lines as the results are obtained from a range of frequencies for
these tests, whereas the regular wave tests are depicted as points as their
results are obtained at single frequencies. Comparing the test results to the
wamit transfer functions, a reasonable match is achieved, showing that a
sufficiently optimal sample length was arrived at using this approach.

6 Conclusions

Transfer functions allow the characteristics of dynamic non-linear systems
to be easily observed. Using the Volterra series, transfer functions at each
order of response can be calculated from input and output data. However,
the successful application of the Volterra series to discrete experimental data
requires careful consideration of the optimal sample length to be used to form
the expected values. Determination of the optimal sample length requires a
trade off between a small enough frequency resolution, and the number of
sample lengths that can be obtained from a finite record length. If the
frequency interval is too large, spectral leakage will occur and the resolution
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Figure 3: Linear transfer function.
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Figure 4: Quadratic transfer function.
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of the transfer functions will be too course. If an insufficient number of sample
lengths are used to form the expected values, errors introduced through noise
may be problematic.

A technique that reduces the number of sample lengths necessary to ob-
tain an accurate representation of the transfer functions is principal compo-
nent analysis. When calculating the transfer functions the input matrix must
be inverted which causes problems, as it is very nearly singular. Therefore,
principal component analysis allows the matrix to be represented by those
eigenvalues and eigenvectors that constitute the major components of the
matrix, by eliminating the linear dependent eigenvalues.

Using these techniques transfer functions were calculated from experi-
mental data collected from a model tlp. Principal component analysis was
utilised by retaining all eigenvalues that were greater than 0.005 times the size
of the maximum eigenvalue. Sample lengths of 1024 data points were used
to form the expected values from the records. A good match was achieved
between the experimental and computational results demonstrating that a
sufficiently optimal sample length of data was adopted.
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