
ANZIAM J. 46 (E) pp.C719–C731, 2005 C719

Parallel Jacobi methods for derivative-free
optimization on parallel or distributed

processors

I. D. Coope∗ M. S. Macklem†

(received 19 November 2004, revised 17 May 2005)

Abstract

New Jacobi-type algorithms are presented for the efficient use of
parallel and distributed computing platforms in solving derivative-
free optimization problems. The implementations are designed to be
fault tolerant to be applicable to science and engineering problems
where occasionally requests for function values may not be met and
derivatives are never available. Convergence is usually achieved by
introducing an elementary trust region subproblem at synchronization
steps in the algorithm. This has the added advantage of handling
negative curvature very conveniently.

∗University of Canterbury, New Zealand. mailto:ian.coope@canterbury.ac.nz
†Simon Fraser University, Vancouver, Canada.
See http://anziamj.austms.org.au/V46/CTAC2004/Coop for this article, c© Aus-

tral. Mathematical Soc. 2005. Published July 28, 2005. ISSN 1446-8735

mailto:ian.coope@canterbury.ac.nz
http://anziamj.austms.org.au/V46/CTAC2004/Coop

ANZIAM J. 46 (E) pp.C719–C731, 2005 C720

Contents

1 Introduction C720

2 Brodlie’s algorithm C722
2.1 Outline of the serial algorithm C722

3 Parallel Jacobi methods C724
3.1 Outline of the parallel algorithm C725

4 A trust region subproblem C726

5 Fault handling C729

6 Concluding remarks C730

References C731

1 Introduction

Brodlie [1] proposed a conjugate direction algorithm, which exploits the prop-
erties of quadratic functions to generate approximations to the eigensystem
of the Hessian matrix of second derivatives of f . The eigenvectors are special
cases of conjugate vectors that also form a mutually orthonormal set. Linear
independence of the search directions is therefore guaranteed. If the function
to be minimized is the quadratic

Q(x) = 1
2
xT Gx + xT g + c , (1)

then G = ∇2Q(x) is the symmetric Hessian matrix of Q. If G has spectral
decomposition G = V DV T where V = [v1, v2, . . . , vn] is an orthogonal matrix
of normalized eigenvectors of G , and where D = diag(d1, d2, . . . , dn) is the

1 Introduction C721

diagonal matrix of corresponding eigenvalues, then the vectors {vj}n
1 satisfy

both conjugacy and orthogonality conditions

vT
i Gvj = 0 = vT

i vj , i 6= j .

In addition, the normalization provides the conditions

vT
j Gvj = dj , vT

j vj = 1 , j = 1, 2, . . . , n ,

which shows that dj is the second directional derivative of Q(x) along the
normalized direction vj. When G is positive definite the unique minimizer
of (1) is x∗ = −G−1g which can also be written

x∗ = −V D−1V T g =
n∑

j=1

αjvj ,

where αj = −(vT
j g)/dj . If x(k) is any point in Rn, then

x∗ = x(k) +
n∑

j=1

βjvj , (2)

where βj = −vT
j ∇Q(x(k))/dj . This illustrates the well-known result that

if a set of G-conjugate vectors is known then the quadratic function (1) is
minimized by searching along each of the conjugate vectors vj for the value
of βj which minimizes Q(x(β)) along the line x(β) = x(k) + βvj .

Brodlie [1] exploits the above properties of quadratic functions to design
an algorithm for use on general functions f(x). The basic idea is to generate
successive approximations V (k), k = 1, 2, . . . , to the eigenvectors of ∇2f(x(k))
using information obtained from performing line searches along search vec-
tors defined by the columns of V (k). The columns of V (k) are revised in a
manner analogous to the cyclic Jacobi method for solving symmetric matrix
eigenvalue problems.

1 Introduction C722

We present a parallel variant of Brodlie’s method which includes a trust
region subproblem at synchronization steps throughout the algorithm. A
brief outline of Brodlie’s algorithm is given in Section 2 and its relationship to
serial Jacobi methods for calculating eigensystems is illustrated. In Section 3
it is shown how parallel Jacobi methods for solving symmetric eigenvalue
problems can also be exploited in unconstrained optimization algorithms. A
potential difficulty in parallelization lies in the synchronization steps which
are required to guarantee descent. To avoid this difficulty, in Section 4 it is
shown that replacing the line search subproblems by trust region subproblems
in appropriate sub-spaces can provide a useful alternative approach which
also conveniently handles problems of negative curvature. Section 5 describes
how the trust region approach also resolves issues surrounding unsuccessful
objective function requests, which can crash many optimization algorithms.
Some conclusions and extensions are discussed in Section 6.

2 Brodlie’s algorithm

In this section Brodlie’s [1] method is outlined, and its relationship to se-
rial Jacobi methods for solving symmetric eigenvalue problems is described.
Notice that the description here differs slightly from Brodlie [1] in order to
facilitate the extensions presented in the following sections.

2.1 Outline of the serial algorithm

1. Initialization: For a given function f : Rn → R , starting point x(1),
an initial set of search directions {v(1)

j }n
j=1.

2. Outer iteration: Disjoint search directions: For a fixed iteration i,
split the search directions into sets of disjoint pairs (v

(i)
p , v

(i)
q). The

2 Brodlie’s algorithm C723

outer iteration will cycle through the disjoint pairs, performing the
inner iteration for each pair.

3. Inner iteration: Let (v
(i)
p , v

(i)
q) be a fixed pair of search directions.

(a) Quadratic approximation: Consider the function

φ(i)(λ, µ) = f(x(i) + λv(i)
p + µv(i)

q) ,

the restriction of f to span(v
(i)
p , v

(i)
q). Approximate this function

by the quadratic function

φ̂(i)(λ, µ) = 1
2
aλ2 + bλµ + 1

2
cµ2 + dλ + eµ + k . (3)

The constants a–e may be determined by five, carefully chosen,
new evaluations of φ(i)(λ, µ) assuming that k = φ(i)(0, 0) = f(x(i)) .

(b) Update minimizer: Perform further function evaluations if de-
sired and define x(i+1) as the point with least function value of all
points considered.

(c) Update search directions: Define θ ∈ (−π
4
, π

4
] by

tan 2θ =
−2b

a− c
,

with a, b and c the quadratic coefficients of φ̂(i)(λ, µ). Update the
search directions by

v(i+1)
p = cos θv(i)

p − sin θv(i)
q ,

v(i+1)
q = sin θv(i)

p + cos θv(i)
q ,

v(i+1)
r = v(i)

r for r 6= p, q .

Observe the following.

2 Brodlie’s algorithm C724

Initialization: For any initial set of orthonormal directions, orthonormality
is maintained in Step 3c. Brodlie [1] proved that if f is a quadratic
function with positive definite Hessian G, if the initial search direc-
tions are chosen to be the coordinate directions, and if the choice of
disjoint pairs follows the same sequence as a cyclic-Jacobi method, then
his algorithm exactly parallels a cyclic Jacobi method for solving the
symmetric eigenvalue problem for the matrix G.

Outer iteration: Brodlie recommended that the pairs (p, q) be chosen in
a cyclic manner so that each pair occurs exactly once in a cycle of
1
2
n(n− 1) rotations so that as much as possible the occurrence of each

search direction is well spaced throughout the cycle.

Inner iteration: Brodlie observes that the line searches are not required
to be accurate, and specifically that the improvement generally arises
from the quadratic fitting step. He describes the process of choosing
points at which to evaluate f using ideas from Powell [5].

3 Parallel Jacobi methods

Jacobi methods for calculating eigensystems of symmetric matrices are par-
ticularly suited to parallelization because it is possible to carry out bn/2c ro-
tations simultaneously if sufficient processors are available. However, care has
to be taken in such algorithms with respect to updating the approximation
to the minimizer (Algorithm 2.1, Step 3b). These updates should be done
only at synchronization steps, as excessive work on a single processor in this
step can be wasted if another processor finds a better point more quickly. We
require a method that combines the work of individual processors efficiently,
as in the following algorithm.

3 Parallel Jacobi methods C725

3.1 Outline of the parallel algorithm

1. Initialization: For a given function f : Rn → R , initialize starting
point x0, a set of search directions {vj}n

j=1, and an initial meshsize
parameter h. Set xc = x0 ; we use xc to record the current best approx-
imation to the minimizer.

2. Outer iteration: Disjoint search directions: As with the serial
implementation, split the search directions into disjoint pairs (vp, vq),
and cycle through the disjoint pairs. We send each pair to different
child processors, getting updated search directions and predictions of
optimal points from each pair, which will be combined on the parent
processor once all pairs have been evaluated.

3. Inner iteration: Calculations performed on a fixed processor:

(a) For a fixed pair of search directions (vp, vq), evaluate f at a suf-
ficient number of points to determine the coefficients of the 2-D
quadratic model (3). The current meshsize h is used to ensure
these points are appropriately spaced.

(b) Unlike the serial version—do not update the minimizer at this
point.

(c) Update directions vp and vq as with the serial version and update
the coefficients a–e of the quadratic model (3) to reflect the change
of basis vectors. Return the new values to the root-level procedure
together with the least function value (and its coordinates).

4. Combination step. Performed by the parent processor after the child
processors have completed all inner iterations, and thus is structurally
part of the outer iteration:

(a) Combine all (disjoint) pairs of search directions to get

x̂ = xc +
n∑

j=1

βj v̂j .

3 Parallel Jacobi methods C726

The coefficients {βj}n
1 are chosen to minimize (approximately) the

quadratic model along each updated direction v̂j using information
returned by the child processors.

(b) Evaluate f(x̂). If f(x̂) < f(xc) (the current lowest point) then
set xc = x̂ . Otherwise, set xc to the best point found across
all inner iterations (across all pairs of search directions used in
current inner iteration). If no lower point has been found, reduce
the meshsize h. Return to Step 2.

Observe the following.

Outer iteration: As with the serial Algorithm 2.1, the pairs (p, q) can be
chosen in a cyclic manner so that each pair occurs exactly once in a
cycle of 1

2
n(n− 1) rotations so that as much as possible the occurrence

of each search direction is well-spaced throughout the cycle.

Inner iteration: Although line searches may be used all that is required
is at least five extra function values, no three of which are evaluated
along the same line.

Combination step: Note that, since the meshsize parameter is updated
during the combination step, a minimum threshold value for this pa-
rameter may be used to terminate the iterations. Also, notice that
suitable values for the βj are more conveniently calculated by solving a
suitable trust region subproblem which takes care of cases where neg-
ative curvature is detected. We consider this trust region problem in
the next section.

4 A trust region subproblem

In this section the problem of determining suitable values for the scalars {βj}n
1

in the parallel Algorithm 3.1 is solved by letting u be the vector whose

4 A trust region subproblem C727

components are βj, j = 1, 2, . . . , n, and then solving an appropriate trust
region subproblem.

The search directions {vj}n
1 together with estimates of the first and second

directional derivatives, dj ≈ vT
j [∇2f(x)]vj and (gV)j ≈ vT

j ∇f(x) , implicitly
provide a quadratic approximation to f(x). Specifically, in the notation of
Section 1, if G = V DV T then the Taylor series approximation

f(x + s) ≈ f(x) + sT∇f(x) + 1
2
sT [∇2f(x)]s

can be replaced by the approximating function

f(x + s) ≈ f(x) + sT g + 1
2
sT Gs .

Therefore, in this section we consider the problem of choosing a suitable step,
s, for improving the estimate of the minimizer, xc, after control has been
returned to the parent processor with updated estimates of V , D and gV .
Note that the components of gV and the entries of the diagonal matrix D are
available as the coefficients of the quadratic models returned by each child
processor in the inner iteration of Algorithm 3.1

A standard quadratic trust region problem [6, e.g.] is

min
s
{1

2
sT Gs + sT g : |‖s‖ −∆| ≤ ρ∆} , (4)

where ‖ · ‖ denotes the vector 2-norm, ∆ denotes the trust region radius and
ρ is a relative tolerance (typically ρ = 0.1). If V T GV = D is a diagonal
matrix for an orthogonal matrix V ,1 then writing s = V u , gV = V T g , an
equivalent trust region problem is

min
u
{1

2
uT Du + uT gV : |‖u‖ −∆| ≤ ρ∆} , (5)

which is trivially and efficiently solved, even if D has some negative entries.2

The solution to problem (4) is then easily recovered in O(n2) flops since
s = V u .

1For example, from using the matlab command [V,D]=eig(G).
2For example, Algorithm 7.7.1 in [6] is suitable for solving problem (5) in O(n) flops.

4 A trust region subproblem C728

In the context of the parallel Jacobi minimization algorithm outlined in
Section 3, the vector gV is replaced by estimates of the directional derivatives
and the diagonal matrix D is replaced by the diagonal matrix of estimates of
second directional derivatives, which are also the estimates of the eigenval-
ues of ∇2f(x). Suppose, for example, that vp and vq are selected in an inner
iteration of the parallel Algorithm 3.1 (Step 3); then the quadratic approxi-
mation built at Step 3a can be used to construct the following estimates at
x = xc :

dp = φ̂λλ(0, 0), dq = φ̂µµ(0, 0), (gV)p = φ̂λ(0, 0), (gV)q = φ̂µ(0, 0). (6)

These estimates can then be updated to reflect the change of basis when
the search directions are updated in Step 3c. Recall that in the parallel
implementations described in Section 3, xc changes only at synchronization
steps, and thus the estimates (6) remain valid until there is a change in xc.
Also note that the purpose of the rotation is to make c = 0 in the quadratic
model corresponding to the revised basis.

The trust region problem can therefore be used to replace the line searches
or two-dimensional sub-space searches for a lower point. Moreover, a suitable
trust region subproblem can be set up at any convenient synchronization
point. As a simple illustration, suppose that n ≥ 6 and there are only
three child processors each of which has been tasked with handling an inner
iteration of Step 3 of the parallel Algorithm 3.1. Let (p1, q1) denote the
indices of the disjoint pair passed to processor 1, (p2, q2) etc. Then when the
three child processors return control to the parent processor the trust region
problem to be solved in Step 4 is

min
ũ
{1

2
ũT D̃ũ + ũT gṼ : |‖ũ‖ −∆| ≤ ρ∆} , (7)

where Ṽ = [vp1 , vq1 , vp2 , vq2 , vp3 , vq3] , D̃ = diag(dp1 , dq1 , dp2 , dq2 , dp3 , dq3) and

ũ ∈ R6 . Then f is evaluated at x̃ + Ṽ ũ and xc can now be updated as the
lowest point found so far. The trust region radius can then be modified as
usual, as outlined in [6]; this then completes the synchronization step and
the child processors can be re-tasked with the next choice of disjoint pairs.

4 A trust region subproblem C729

This approach provides great flexibility in the way multi-processors are
used. As a further illustration, there is no longer a need to limit individual
processors to constructing a two-dimensional model. It may be useful to
consider 3-D (or higher) models where the eigensystem of a three dimensional
subspace is constructed using 9 extra function evaluations instead of 5 for
the 2-D model. Alternatively, the trust region problem can be omitted at
some synchronization steps awaiting a better approximation to G (through
V and D). If there are 50 variables and five processors, then 25 rotations are
required for a minor series (using Brodlie’s terminology). Thus tasking each
child processor five times before solving the trust region problem may be an
appropriate choice since then each direction has been ‘rotated’ once only.

5 Fault handling

The trust region approach described in Section 4 is also useful for handling
faults. If a child processor is unable to handle a request for a function eval-
uation or a function call returns NaN or Inf (ieee floating point arithmetic)
or even if the child processor itself should fail for some reason, then the par-
ent processor just omits that component from the trust region problem. If a
rotation is not completed because of one or more unavailable function eval-
uations, the child processor may still be able to return some useful partial
information to be incorporated into the trust region problem. For example,
there may be enough successful evaluations to provide dp and (gV)p but not
the corresponding terms for index q. In this case a rotation cannot be com-
puted but the information on direction vp can be passed back to the parent
processor and incorporated in problem (7). The missed rotation can sub-
sequently be re-tasked to the same or a different child processor after the
combination step (Step 4) of the parallel Algorithm 3.1 has been completed.

5 Fault handling C730

6 Concluding remarks

The work of the previous sections shows that there are many possibilities for
constructing Jacobi-type algorithms for derivative free optimization that are
capable of exploiting parallel processing environments. Some of the possi-
bilities mentioned are currently under further investigation both numerically
and theoretically and will be reported on in due course.

A convergence analysis cannot properly be addressed in such a short
paper as this but note that questions of convergence can be analyzed either
by enforcing an appropriate trust region framework [6, §9.4] or by imposing
some extra requirements on the choice of points used in the inner iterations,
together with a careful choice of rule for modifying the mesh size parameter h,
which is more in line with the framework described in [2, 3]. It is not necessary
for V to converge to the matrix of eigenvectors of ∇2f in order to establish
convergence to a stationary point but the use of second order information
through V and D may provide a mechanism for establishing convergence to
a stationary point satisfying second order necessary conditions.

Algorithm 3.1 could also be implemented in serial mode. In this case
each new rotation step is handled serially by one processor. The current best
approximation to the minimizer is then updated only at ‘synchronization
steps’ which are performed after a set number of rotations. An obvious
choice is after a series of ‘minor iterations’ where every search direction has
been used just once.

Finally, we note that when n is odd a special one-dimensional iteration
may replace a choice of disjoint pairs as described by Brodlie [1]. There
is no difficulty in incorporating this into the framework of Algorithm 3.1.
Numerical experiments are in progress and will be reported at a later date [4].

Acknowledgment: This work was initiated whilst the first author was
Visiting Professor at Simon Fraser University. The support of the Colab

6 Concluding remarks C731

team and in particular that of its Director, Jonathan Borwein, is gratefully
acknowledged.

References

[1] K. W. Brodlie. A new method for unconstrained minimization without
evaluating derivatives. J. Inst. Math. Appl., 15, 385–396, 1975. C720,
C721, C722, C724, C730

[2] I. D. Coope, C. J. Price. Frame-based methods for unconstrained
optimization. Journal of Optimization Theory & Applications, 107,
261–274, 2000. C730

[3] I. D. Coope, C. J. Price. On the convergence of grid-based methods for
unconstrained optimization. SIAM Journal on Optimization, 11,
859–869, 2001. C730

[4] M. S. Macklem. PhD Thesis. Simon Fraser University, forthcoming.
C730

[5] M. J. D. Powell. An efficient method for for finding the minimum of a
function of several variables without calculating derivatives. Computer
Journal, 7, 155–162, 1964. C724

[6] A. R. Conn, N. I. M. Gould and Ph. L. Toint. Trust–Region Methods.
MPS–SIAM Series on Optimization, 2000. C727, C728, C730

	Introduction
	Brodlie's algorithm
	Outline of the serial algorithm

	Parallel Jacobi methods
	Outline of the parallel algorithm

	A trust region subproblem
	Fault handling
	Concluding remarks
	References

