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A note on the relation of Gaussian elimination
to the conjugate directions algorithm
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Abstract

This work examines the relation between Gaussian elimination and
the conjugate directions algorithm [Hestenes and Steifel, 1952]. Anal-
ysis is extended to the case where the sequence of the conjugated
vectors is modified, which is shown to result in reordering of the solu-
tion vector. Based on these analyses an algorithm is described which
combines Gaussian elimination with a look-ahead algorithm. The pur-
pose of the algorithm is to employ Gaussian elimination on a system
of smaller order and to use this solution to approximate the solution
of the original system. The algorithm was tested on a range of lin-
ear systems and performed well when the components in the solution
vector varied by large magnitude.
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1 Introduction

It is common to solve a set of linear equations using either Gaussian elim-
ination or a variant of the conjugate directions algorithm. Accordingly, it
is important to obtain a thorough understanding of their mechanics. It was
observed initially in [6] and later in [4, p.173–177] that when the coefficient
matrix is symmetric and positive definite Gaussian elimination is derived
from a conjugate Gram–Schmidt algorithm and the conjugate directions al-
gorithm. This work proves a relation between Gaussian elimination and
the conjugate Gram–Schmidt algorithm and extends the analysis to the case
when the sequence of conjugated vectors is changed. Based on these analyses
an algorithm is described such that a solution with a sufficiently small resid-
ual can be obtained by employing Gaussian elimination on a linear system
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of reduced order compared to the original linear system.

Besides the above references the relations between Gaussian elimination
and the conjugate directions algorithm were found to be briefly mentioned
only in [1, p.463] and [2], presumably since attention focused on the more
efficient conjugate gradient variant. However, the present analysis is benefi-
cial since it provides a uniform understanding and relates what appears to be
disjoint approaches. Section 2 provides a concise background. Section 3 ex-
amines the basic relations. Section 4 extends the results to the case when the
sequence of the conjugated directions is changed. Section 5 describes an al-
gorithm which combines Gaussian elimination with the conjugate directions
algorithm to produce an approximate solution and discusses computational
results.

2 Background

The three topics relevant to this work are Gaussian elimination, the Gram–
Schmidt algorithm and the conjugate directions algorithm. Attention is given
only to aspects relevant to the present work. Full details of these algorithms
can found in many good references, such as [3, 7].

The following standard notation is used in this paper. A matrix is given
in bold uppercase (for example, M), its ith row vector is M i and its element
at the ith row and the jth column is M i,j . Vectors are given in bold, for
example, v. A vector set is denoted by calligraphic uppercase letters, for
example, Q = {q1, q2, . . . , qn} denotes that Q is a vector set containing
q1, . . . , qn . The ith component of a vector v is given by vi and it is not bold
to distinguish it from a vector within a set. Scalars are not emphasized and a
superscript k denotes the kth update of the variable (for example, M (k)). The
standard Euclidean inner product of two vectors is 〈u, v〉 and the identity
matrix is I ∈ Rn×n . The order of a matrix is defined explicitly except where
it is inferred from the context.
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2.1 Gaussian elimination

Gaussian elimination solves the linear equation set problem

Ax = b , A ∈ Rn×n , b ∈ Rn , (1)

by the factorization A = LU where L is lower triangular and U is upper
triangular. The solution vector is found by solving two triangular systems
such that Ly = b and Ux = y . The factorization is conveniently expressed
as premultiplication by lower triangular matrices which describe the linear
operations on the rows of A. Accordingly at a stage k > 1 of the factorization
the coefficient matrix A(k) is

Lk · · ·L2A = A(k) (2)

and
Ln+1 · · ·L2A = U . (3)

When the coefficient matrix is symmetric and positive definite Gaussian
elimination is stable so pivoting is unnecessary and hence the factorization
is unique.

2.2 The Gram–Schmidt algorithm

Given a linearly independent vector set V = {v1, . . . ,vn} the algorithm gen-
erates a mutually orthogonal vector setQ with the same span using successive
orthogonal projections, that is,

Q = {q1, . . . , qn} , 〈qi, qj〉 = 0 for all i 6= j , span{V} = span{Q} , (4)

q1 = v1 , qi = vi −
i−1∑
j=1

〈
vi, qj

〉〈
qj, qj

〉qj =

(
I −

i−1∑
j=1

qjq
T
j〈

qj, qj

〉)vi , i ≥ 2 . (5)
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When A is symmetric and positive definite it is possible to define the
A-norm of a vector as ‖x‖A =

√
〈Ax, x〉 since ‖x‖A > 0 for all x 6= 0 and

‖x‖A = 0 only if x = 0 . Accordingly it is possible to extend the orthogonal
Gram–Schmidt algorithm so as to generate a vector set Q which is mutually
A-orthogonal or conjugate using A-orthogonal projections, that is,

Q = {q1, . . . , qn} ,
〈
Aqi, qj

〉
= 0 for all i 6= j , span{V} = span{Q} ,

(6)

q1 = v1 , qi = vi −
i−1∑
j=1

〈
Avi, qj

〉〈
Aqj, qj

〉qj =

(
I −

i−1∑
j=1

qjq
T
j A〈

Aqj, qj

〉)vi , i ≥ 2 .

(7)

2.3 The conjugate directions algorithm

When A is symmetric and positive definite it is possible to solve (1) as an
optimization problem based on the level surfaces of positive definite quadratic
functions [4, 5]. In this case the solution of the linear equation set problem
can be obtained by minimizing the positive definite quadratic function

ϕ(x) : Rn → R , ϕ(x) =
1

2
〈Ax, x〉 − 〈b, x〉 , (8)

since its gradient is
∇ϕ(x) = Ax− b , (9)

and accordingly the unique minimizer x∗ of ϕ(x) satisfies ∇ϕ(x∗) = 0 or
Ax∗ = b .

The conjugate directions algorithm [4, 6] obtains the minimizer x∗ by suc-
cessively minimizing ϕ(x) along directions which are mutually conjugated,
starting from an initial guess x(1). Disregarding finite precision considera-
tions, the method obtains the exact minimizer x∗ in exactly n minimizations.
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At intermediate stages k < n + 1 the algorithm provides an approximate so-
lution x(k) and its corresponding residual r(k) = b−Ax(k) such that〈

x(k), r(k)
〉

= 0 . (10)

Numerous variants have been derived based on the above basic approach
including the popular conjugate gradients method. Algorithm 1 describes
the conjugate directions algorithm relevant to the present work.

Algorithm 1: The conjugate directions algorithms.

Require: Q = {q1, . . . , qn} , span {Q} = Rn , 〈Aqi, qj〉 = 0 for all i 6= j ,

A ∈ Rn×n symmetric positive definite , b ∈ Rn , x(1) ∈ Rn .
1: r(1) = b−Ax(1)

2: for i = 1 to n do

3: x(i+1) = x(i) +

〈
qi, r

(i)
〉

〈Aqi, qi〉
qi

4: r(i+1) = r(i) −
〈
qi, r

(i)
〉

〈Aqi, qi〉
Aqi

5: end for
6: Returns x(n+1) = x∗ : Ax∗ = b

3 The basic relations

When Gaussian elimination is employed on a coefficient matrix A which
is symmetric and positive definite the matrix A(k) may be obtained by a
conjugate Gram–Schmidt algorithm. This is shown initially for a single step
and then extended to the general case.

Defining A(1) = A and employing Gaussian elimination on (1) then after
one step the resultant system is

A(2)x = b(2) , A(2) =

(
a wT

0 B

)
. (11)
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The row-wise elimination along the first column of A(1) is

A
(2)
i = A

(1)
i −

A
(1)
i,1

A
(1)
1,1

A
(1)
1 . (12)

Let Q(1) be the natural coordinates vector set in Rn so q
(1)
i is all zeros

except for the ith component which is one. Accordingly the term

A
(1)
i,1 =

〈
Aq

(1)
i , q

(1)
1

〉
, (13)

and (12) is written as

A
(2)
i = A

q
(1)
i −

〈
Aq

(1)
i , q

(1)
1

〉
〈
Aq

(1)
1 , q

(1)
1

〉q
(1)
1

 = Aq
(2)
i . (14)

The expression in parenthesis is a conjugation of the vectors q
(1)
2 , . . . , q

(1)
n

to the vector q
(1)
1 as described in (7). Let the matrix

Q
(k)
i = q

(k)
i , q

(k)
i ∈ Q(k) , (15)

that is, its ith row vector is the ith vector in the set Q(k). Relation (14) is
written in matrix notation as

A(2) =
(
AQ(2)

)T

=
(
Q(2)

)T

A , (16)

hence after one step of Gaussian elimination the coefficient matrix A(2) is

the image of A on the vector basis
(
Q(2)

)T

or alternatively
(
Q(2)

)T

= L2

which is the lower triangular matrix of Gaussian elimination (§2.1).

Also, from (1) and (16),

b(2) =
(
Q(2)

)T

b , (17)

and these relations are extended by the following lemma.



3 The basic relations C978

Lemma 1 When Gaussian elimination is employed on a symmetric positive
definite coefficient matrix A ∈ Rn×n then the matrix at stage k, denoted A(k),
is obtained by a conjugate Gram–Schmidt algorithm using a vector set Q =
{q1, . . . , qn} such that qi is the ith natural coordinate axis in R(n−k+1) .

Proof: It is easy to prove that when A is symmetric and positive definite
then the trailing sub-matrix B in (11) is also symmetric and positive definite,
for example by a Cholesky factorization. Since B ∈ R(n−1)×(n−1) and the next
step of Gaussian elimination operates only on B then relations (11)–(21) are
valid if a vector set Q(2) =

{
q1, . . . , qn−1

}
such that qi is the ith natural

coordinate axis in Rn−1 and the matrix Q(2) is such that Q
(2)
i = qi . By

induction it follows that at each step of the Gaussian elimination there exists
a symmetric positive definite sub-matrix and the relations hold with a suit-
able vector set Q(k). Hence A(k) is derived from a conjugate Gram–Schmidt
algorithm. ♠

By the relation to the conjugated Gram–Schmidt algorithm and since
A is symmetric and positive definite, it is possible to generate during the
elimination an approximate solution with an associated residual based on
Algorithm 1 and the conjugated vector set Q(2). If x(1) = 0 from which
r(1) = b then b(2) is the sum of two vectors [4, p.174–175]

b(2) =
(
q

(1)
1

T
b, 0, . . . , 0

)
+ r(2) , (18)

where r(2) is the residual and has the form

r(2) =
(
0, r

(2)
2 , . . . , r(2)

n

)
. (19)

From the orthogonal relation (10),〈
x(2), r(2)

〉
= 0 , (20)
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hence
x(2) =

(
x

(2)
1 , 0, . . . , 0

)
∈ Rn . (21)

Relations (11)–(21) were observed to hold using the vector set Q(k) where

q
(1)
i is the ith natural coordinate axis in Rn and the vectors q

(k)
i , i = 1, . . . , k−

1 are mutually conjugated, that is, for stages k = 2, . . . , n + 1 and x(1) = 0
the following relations hold with Q(k) obtained from the relation in (15):

Q(k) :
〈
Aq

(k)
i , q

(k)
j

〉
= 0 , 1 6 i 6 k − 1 , k − 1 < j 6 n , (22)

A(k) = Q(k)A , (23)

b(k) = Q(k)b , (24)

r(k) =
(
0, . . . , 0, b

(k)
k , . . . , b(k)

n

)
∈ Rn , (25)

x(k) =
(
x

(k)
1 , . . . , x

(k)
k−1, 0, . . . , 0

)
∈ Rn . (26)

4 Extension to a different sequence of

conjugated vectors

In the previous section choosing Q(1) such that Q(1) = I defined the sequence
of the conjugated vectors. In this section the analysis is extended to the case
when the sequence of conjugated vectors is changed. Let P ∈ Rn×n be a
non-singular permutation matrix, that is, each row P i is all zeros except a
single component which is one. In this case the system

PAP T Px = Pb (27)

has the same solution as (1) since P is orthogonal
(
PP T = I

)
. Furthermore

the matrix PAP T is symmetric since
(
PAP T

)T
= PAP T and it is positive

definite since P is non-singular and
〈
PAP T x, x

〉
= xT PAP T x = yT Ay >

0 for all x 6= 0 .
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Equation (27) implies the procedure of Section 3 can be used with the
symmetric positive matrix Ā = PAP T and the vector b̄ = Pb . This results
in a solution vector whose components are reordered such that x̄ = Px .
Since the factorization of Ā is unique it follows the relations (22)–(26) must
hold with Q(1) = P to account for the reordering of the components in the
solution vector. Thus x̄ can be obtained by either solving (1) with Q(1) = P
or by initially permuting (1) to obtain (27) and then solving with Q(1) = I .

5 A look-ahead algorithm for Gaussian

elimination

The results of §3 and §4 imply that the vector sequence in Q(1) determines the
sequence of components in the approximate solution vector x(l), 1 6 l 6 n+1
and accordingly in its associated residual. Furthermore, the approximate
solution (26) is updated coordinate-wise hence at each stage l it contains at
most l − 1 non-zero components. Thus the leading l − 1 components may
be regarded as the solution vector of a linear system of order l − 1. These
observations motivated the idea that it is possible to reduce the work required
to solve (1) when using Gaussian elimination by solving a linear system of
smaller order. The solution of the smaller system is used to approximate the
solution of the original system. Accordingly the smaller system should be
generated so as to minimize the residual of the approximate solution.

To accomplish this, prior to the Gaussian elimination a look-ahead al-
gorithm is employed whose purpose is to generate a linear system from (1)
of order k < n , referred to as a reduced linear system. This system is gen-
erated using a permutation matrix P which is determined by the following
procedure.

Let U (k), V(k) be the vector sets such that U (1) is initially empty, that is,
U (1) = ∅ and V(1) = {v1, . . . ,vn} such that vi is the ith natural coordinate
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axis in Rn.

Also let r(k) be the residual variable such that r(1) = b . At each stage
one vector is removed from V(k) and one vector is added to U (k) as follows.
Assuming stage k > 1 then V(k) contains n − k + 1 vectors and U (k) =
{u1, . . . ,uk−1} . For each vector v ∈ V(k) two vectors are found:

u = u(v) =

(
I −

k−1∑
j=1

Auju
T
j

〈Auj, uj〉

)
v , (28)

r(v) = r(k−1) −
〈
r(k−1), u

〉
〈Au, u〉

Au , (29)

and a vector v̂ ∈ V(k) is chosen such that

v̂ : min {‖r(v)‖2} for all v ∈ V(k) , (30)

hence v̂ minimizes the residual norm out of all vector in V(k). Next u(v̂) is
added to U (k) such that uk = u(v̂) , v̂ is removed from V(k) and r(k) = r (v̂) .
The procedure continues until

∥∥r(k)
∥∥ 6 ε , where ε is chosen by the user.

The procedure identifies the sequence of vectors which minimizes the
residual most quickly. This sequence defines the sequence of components in
the solution vector and accordingly it defines a permutation matrix P ∈ Rk×n

and a reordered system as in (27) whose solution is

x̄ = (x̄1, . . . , x̄k) ∈ Rk , (31)

and the approximate (permuted) solution to the original problem (1) is

xapp = (x̄1, . . . , x̄k, 0, . . . , 0) ∈ Rn . (32)

Three computational issues are considered. First, in order to efficiently
generate the conjugated vectors in (28) the coefficient matrix A should be
sparse since the procedure involves matrix-vector multiplications. Second,
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in the approximate solution (32) the final (n − k) components are taken as
zero and in order for the residual rapp = b − Axapp to be small these com-
ponents should have little or no affect on the solution of (1). If it is a priori
known which components can be ignored, for example, due to their expected
magnitude or the structure of A, it is trivial to generate a reduced system.
Otherwise a reasonable assumption is that the order of the elements of A is
uniform, for example O (Ai,j) = 1 for all 1 6 i, j 6 n , and if all components
in the solution vector are equally important then the above approximation is
valid if some components are much larger (and hence more significant) than
others. Accordingly if x ∈ Rn then there are n · Dx significant components
where Dx ∈ [0, 1] represents the density of x. The insignificant components
are smaller by at least a scale factor sf from the significant ones. Thus it is
possible to reorder x such that

|xi| > sf · |xj| 1 6 i 6 k , k + 1 6 j 6 n . (33)

For example, this occurs when the solution vector is an update of variables
when only variables in a subset are changed. Finally, (28)–(29) can be sim-
plified if the vectors in V(k) are conjugated to v̂ at each stage.

Algorithm 2 describes the look-ahead algorithm. It was implemented and
tested with Gaussian elimination on systems of order n = 25 and 50 . Test
cases were designed to examine the effect of the density of A defined by
DA ∈ [0, 1] as percent of non-zero elements in A, the order ratio (sf) and
the density of x (Dx). Each test case examined one combination from the
following preset values: (a) DA = 0.10 , 0.25 (b) sf = 100 , 1000 (c) Dx =
0.25 , 0.50 . The elements of A and x were generated in random using a
uniform distribution and n · (1−Dx) components in x were divided by sf to
reduce their order. The final values of A and x defined the right hand side
vector b and the algorithm was applied as described earlier.

At each test case two variables were recorded: the ratio between the
initial to the final residual (r) and the order of the reduced linear system (k).
These variables define the efficiency of the procedure since r indicates the
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Algorithm 2: The look-ahead algorithm for Gaussian elimination.

Require: A ∈ Rn×n symmetric positive definite, b ∈ Rn , εr > 0 .
1: k = 0
2: r(1) = b
3: U (1) = ∅
4: V(1) = {v1, . . . ,vn} : vi is the ith natural coordinate vector in Rn

5: repeat
6: k = k + 1
7: for all v ∈ V(k) do
8: find u(v) , r(k)(v)
9: end for

10: v̂ : min {‖r(v)‖2} for all v ∈ V(k)

11: r(k) = r (v̂)
12: U (k+1) = U (k) ∪ u (v̂)
13: V(k+1) = V(k) \ v̂
14: until

∥∥r(k)
∥∥ 6 εr

15: generate P

adequacy of the approximate solution and k determines the amount of work
required by the Gaussian elimination. These values indicate the performance
of the algorithm after convergence, that is, after the approximate residual is
considered sufficiently small. Each case was repeated for ten times and the
averaged results are summarized in Table 1. The following relations were
observed:

• In all cases the algorithm obtained a residual which was O(10−4) of the
initial residual using a reduced linear system. The order of the reduced
system was affected by a combination of all parameters.

• The parameter sf had the greatest effect on the order of the reduced
system. When sf = 100 was used the order of the smaller system was
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very close to the full system, but with sf = 1000 the smaller system
was about half size of the original (depending on Dx).

• Changes in DA and Dx had a minor effect on the order of the reduced
system. For example, changing DA from 0.1 (Test 10) to 0.25 (Test 14)
increased the order of the reduced system (k) by six from 22 to 28 .
Doubling Dx from 0.25 (Test 10) to 0.5 (Test 12) increased k by seven
from 22 to 29 .

Accordingly the algorithm results in a satisfactory residual when com-
ponents of the solution vector differ a by large magnitude. The density of
the coefficient matrix and of the solution vector have a smaller effect on the
order of the reduced system.

6 Summary

The relation between Gaussian elimination and the conjugate directions al-
gorithm was analyzed. The relation was extended to the case where the
sequence of the conjugated vectors is modified, which was shown to result in
reordering of the solution vector. Based on these analyses an algorithm was
described which combines Gaussian elimination with a look-ahead algorithm.
The purpose of the algorithm is to generate a linear system of reduced or-
der whose solution would approximate the exact solution of the full system.
The algorithm was tested on a range of linear systems. It generated satis-
factory approximate solutions using significantly smaller linear system when
the components in the solution vector varied by a large magnitude.
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Table 1: Test results with the look-ahead Gaussian elimination algorithm.
Case n DA Dx sf r k

1 25 0.10 0.25 100 6.14e-4 22
2 25 0.10 0.25 1000 9.36e-4 10
3 25 0.10 0.50 100 7.11e-4 22
4 25 0.10 0.50 1000 7.26e-4 13
5 25 0.25 0.25 100 3.71e-4 23
6 25 0.25 0.25 1000 8.28e-4 14
7 25 0.25 0.50 100 5.40e-4 22
8 25 0.25 0.50 1000 8.22e-4 14

9 50 0.10 0.25 100 8.06e-4 44
10 50 0.10 0.25 1000 9.56e-4 22
11 50 0.10 0.50 100 7.21e-4 45
12 50 0.10 0.50 1000 7.90e-4 29
13 50 0.25 0.25 100 3.22e-4 48
14 50 0.25 0.25 1000 7.56e-4 28
15 50 0.25 0.50 100 3.58e-4 48
16 50 0.25 0.50 1000 6.78e-4 31
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