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Abstract

Maintaining and adapting scientific applications software is an
ongoing issue for many researchers and communities, especially in
domains such as geophysics, where community codes are constantly
evolving to adopt new solution methods and constitutive laws. Tra-
ditional high performance computing code is written in C or Fortran,
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which offer high performance but are notoriously difficult to evolve
and maintain. Object-oriented and interpretive programming lan-
guages (such as C++, Java, and Python) offer better support for
code evolution and maintenance, but have not been widely adopted
for scientific programming, for reasons including their performance
and/or complexity. This paper describes our approach to developing
scientific codes in C that provides the flexibility of interpreted object-
oriented environments with the performance of traditional C program-
ming, through techniques including entry points, plug-ins, and coarse
grained objects. This approach has been used to implement two very
differently formulated scientific codes in active use and development
by the geophysics scientific community.
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1 Motivation

Scientific software maintenance and evolution (adaptation) often requires
changing the program’s internal structural boundaries [1] (not just localized
replacement or extension of one component or structure). Such structural
changes are required for improving performance, changing a numerical tech-
nique or a constitutive relationship. Yet internal structural boundaries, such
as the data stored on a mesh point and its access and distribution, are the
lowest point of usable abstraction in the program. Changing these structural
boundaries is changing the very essence of the program.

For example, if an existing finite element method code is to have a La-
grangian integration point scheme added to it, the mathematical model for
integration is significantly different [2]. To efficiently implement this there
needs to be a element/shape-function template for each element, instead of a
single global element/shape-function template. Unless the original code was
designed with this adaptation in mind, major recoding is needed.

Adaptation is commonplace for computational modellers. Constitutive
rules are becoming increasingly complex, incorporating a greater spectrum
of physics. Similarly, numerical techniques are drawing in more mathematics,
and the chosen technique is often a balancing act between performance and
accuracy that is specific to a problem domain. The need for adaptation is
compounded because implementations are often experimental, iterative steps
towards explaining real world observables.

The criterion for completion of a scientific research project is usually
one or more publications. At that point software development stops, with
little or no concern for future work. In general, scientists try to minimize
the complexity and sophistication of the software they develop, and focus
instead on research outcomes.

The problem is not unique to computational science. The issue of in-
creasing complexity and associated development cost has been a significant
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software engineering topic for the last 30 years. Ironically, in the late 80s,
the mathematical software community was acclaimed for the successful early
adoption of reuse (for example the blas libraries) [1, 3]. This success has
been attributed to this form of mathematics (linear algebra) possessing a
rich, standard nomenclature [1]. However, modelling of geodynamics, is not
so well defined and understood. It is experimental—the code changes. There
are no further “obvious” opportunities for reuse.

Since the mid 80’s the adoption of three related software engineering
techniques has led to more adaptable software, driven largely by commercial
software development:

1. Object-Oriented (oo) programming

2. Component-Based Software Development

3. Rapid Applications Development (rad) tools, environments, and lan-
guages

oo programming languages, such as Java, C++, and C#, are now the
dominant programming languages for modern commercial software develop-
ment. However, despite several major efforts, such as Java Grande [11] and
pooma [10], oop has made little inroads into mainstream scientific software
development. The primary reason for this has been performance: dynamic
oop languages incur a significant performance penalty. A secondary reason
is that objects and classes are difficult abstractions to apply to continuum
physics, beyond the coarse grained abstractions of matrices and vectors.

Component-based development means building an application by assem-
bling components from existing frameworks (large-scale integrated compo-
nent libraries, typically oo). Framework libraries such as j2ee and .net are
in widespread use for commercial software development, and contain thou-
sands of reusable and adaptable classes. By contrast, scientific libraries, such
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as petsc [9] and nag, are used on a relatively small scale and generally are
useful only for implicit solvers.

Rapid Application Development (rad) techniques helped to validate the
Evolutionary Development [4] approach. This has since spawned into a col-
lection of techniques collectively known as Agile Software Development (for
example, xp, fdd, and Scrum) [5, 6]. Hence the popularity of tools such as
Python [7]. Python makes rapid development a realistic goal, and it does
this by focusing on enabling capabilities, such as: component integration,
reducing artificial complexities, build-cycle turnaround, whilst still being a
full featured programming language [7]. However, it is not feasible to write
fine-grain computational code with Python, because of its performance over-
heads.

What is needed is the introduction of oo frameworks and python-like
abilities into traditional computational science languages such as C and For-
tran, without sacrificing performance. We describe how we have done this
with the StGermain framework.

2 Python and adaptation

To minimise the need to do adaptation, and to minimise the cost of future
adaptation, a Python software project is encouraged to deal with change
from the outset. Python’s popularity is a direct function of its philosophy,
that is, to deal with change. This is evident in many of its features:

1. Python is interpretative: build time is eliminated. Large compiled
projects take considerable time to build and this affects a developer’s
choice on when and how often to make changes, rebuild, and retest.

2. Python supports oo development: software components can represent
real-world objects, raising the program structure closer to the appli-
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cation design. oo development implies encapsulation and information
hiding which tend to localize code changes needed to support adapta-
tion.

3. Python supports fully dynamic typing: the type of an object can change
at run-time. If a class (template of a real world object) does not possess
properties required by another piece of code, the program can add this
property to the class at run-time. The user of the class does not need
to ensure this property is available at compile time. In strongly typed
languages, such as Java and C++, class definitions and types are fixed,
and users of this class are constrained by this. Full dynamic typing
is useful in scientific software development as it allows behaviors to be
added to user-defined class without defining new classes or recompiling.

4. Python is easily extensible: creating wrappers of code written in other
languages, and installing these as python modules for use is easy, con-
sistent and standardised. This encourages reuse, localises changes, and
easily allows derivative works without needing to modify the source
module(s).

Python’s flexibility comes at a cost in performance. All data items are
complex runtime entities, including member functions. For this reason we
do not use Python to write complete hpc codes. Rather, it is utilised in a
coarse-grain manner, to write the superstructure or top-level main control
program, calling upon fine grain code written in languages such as C and
Fortran. This works well for stable codes, where the use of the code is
typically of a production nature (that is, executing large runs). However,
when the numerics or physics requires change, then fine grain and structural
code change is required. The challenge is to support such structural change
without sacrificing performance
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3 Bringing adaptability to HPC

hpc languages and typical applications are philosophically quite opposite to
that of Python. They are designed for run-time speed. Any choice that can
be made at compile time is eliminating unnecessary work at run-time and
permitting further hardware based optimizations by a compiler. Computa-
tional codes typically perform the same subset of mathematical operations
on thousands or millions of discretised points, for many time-steps, in “inner
loops”. If the run time for these mathematical operations in inner loops is
doubled, then the total simulation time will double too. This can halve the
number of simulations that a scientist can run, or the size of the problem
that can be modeled, hence rendering adaptability of little value.

Typical hpc languages, such as Fortran and C, are compiled, not inter-
preted. However, an approximation to interpreted scripting can be achieved
by using input files to set all possible parameters to a problem, both data
and algorithmic, rather than hard-coding them as constants in the program.
Coding in C has a major advantage as C is a “machine oriented high-level
language”. By using C, almost anything can be implemented including highly
adaptable applications (ranging from C++ compilers to Java interpreters).
There is, however, a sliding scale on the performance costs in introducing
adaptability.

There are two key issues in adaptability:

1. Data — are objects allocated dynamically, and at what level?

2. Algorithms — are functions and operations dynamically specified, and
at what level?
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Table 1: Array allocation methodologies

Average time in seconds (relative)
Methodology gcc no optimisations gcc optimised

1 Static 22 (1) 21 (0.95)
2 Dynamic 22 (1) 21 (0.95)
3 Coarsely object-oriented 22 (1) 21 (0.95)
4 Finely object-oriented 35 (1.59) 34 (1.55)
5 Coarsely and finely 35 (1.59) 34 (1.55)

3.1 Data adaptability

As an example, for a finite element or finite difference code, an obvious pa-
rameter for sourcing from an input file is the mesh size. This parameter has a
direct mapping to the amount of memory required to maintain the mesh and
the qualities maintained upon it. There are many other parameters of the
same nature. Traditional Fortran methodology relies on knowing the array
allocation size at compile time for compiler optimization and hence faster ex-
ecution. For example, in supercomputing’s golden days, a Fortran compiler
could map this array to its own memory segment, where segment registers
were a relatively scarce resource, but were fully resolved as part of memory
fetching [8]. Other pieces of data, such as a particular material property,
would reside inside one of these segments as an offset. In Fortran these seg-
ments are referred to as common blocks. However, processor memory models
have evolved, allowing programming languages to utilise the same high-speed
low-level processor infrastructure. That is, programming constructs such as
structs and classes can be segments, not just the traditional programming
constructs of stack, code, heap, common block, etc.

Table 1 compares averaged times of the idealised representations of array
allocation methodologies. Each create arrays indicative of storing and manip-
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ulating coordinates from velocities of a mesh following a different methodol-
ogy: static, dynamic, coarsely object-oriented, finely object-oriented. These
are a natural progression from a traditional-Fortran hard-wired problem (1),
to run-time provided problem size ability (2), to enabling component reuse at
compile and run-times (3,4,5). The step from hard-wired to run-time problem
descriptions are now commonplace, and essential for maintainability which is
in-turn essential for experimental science. The ability to adopt oo method-
ologies are also essential for reuse, reduction in complexity and contemporary
levels maintainability. The essential factor is how “fine” objects are defined,
as a compiler’s implementation of objects cost more than traditional meth-
ods. We define coarse object orientation as creating abstractions of higher
level or closer to real world items, such as “Mesh” or “Solver”. There are few
of these in the system and they are large scale contiguous memory structures.
Conversely, fine refers to items that are numerous, and small scale, such as
“Node” or “Point”.

The suite of idealised codes can be found at http://csd.vpac.org/

CtacAnziamPaperRuns. The tested platform is a Pentium 4 with sufficient
physical memory (1GB) to prevent paging. The number of nodes is 25 000 000
(approximately 200MBs), and the equation is iterated 50 times. An initial
loop is used to page-in the array and initialise it with values. For sim-
plification, 1D arrays are used. For control, C is the only language used;
classes are mimicked via structures. gcc is the compiler, with no optimi-
sation achieved through the flag -O0 and optimisation achieved through the
flags -march=pentium4 -O3. The aim is not to get definitive results, but to
ascertain confidence in established rules of thumb. cpus have many finite
registers and other resources that are not exhausted in these experiments.

The results are interesting because the performance of all but the finely
oo methodology are the same. The finely object-oriented methodology yields
execution times that are over 50% slower. Memory accesses to any data item,
whether it be a global variable (common block), on the stack, on the heap
or inside a structure, is accessed in the same way; by base-offset pairs. The

http://csd.vpac.org/CtacAnziamPaperRuns
http://csd.vpac.org/CtacAnziamPaperRuns
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Table 2: Procedural methodologies

Average time in seconds (relative)
Methodology gcc no optimisations gcc optimised

1 inlined (coarsely oo) 22 (1) 21 (0.95)
2 per iteration static function 22 (1) 21 (0.95)
3 per index static function 28 (1.27) 21 (0.95)
4 per index function pointer 28 (1.27) 24 (1.09)
5 per index entry point 48 (2.18) 26 (1.18)

variable itself is merely an offset to a base memory location. The processor
maintains a relatively small (roughly 32) register bank for these base pointers.
These registers are optimised for calculating the final address of the base-
offset pairs required as part of typical processor operations. However, loading
an address into a base register is an extra cost. In the finely object-oriented
approach, the base changes for each index (as opposed to once), and hence
invoking an extra memory operation per loop.

The conclusion is simply that fine-grained oo data allocation should
be avoided, but large-scale coarse-grain oo allocation incurs no significant
penalty (and large-scale allocation can contain fine-grained objects).

3.2 Algorithmic adaptability

Table 2 compares averaged times of the idealised representations of procedu-
ral methodologies. Each modify the coarsely object-oriented example above
with the following function calling methodologies: inlined, per iteration static
function, per index static function, per index function pointer, per index dy-
namic function pointer. These take a natural progression from a hard-wired
monolithic code (1), to a hard-wired piece-wise code (2), to run-time in-
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terchangeable code (4). The step from hard-wired monolithic to piece-wise
breaks of the problem into many discrete functions. This is done to reduce
code complexity and promote code reuse.

The step to run-time interchangeable enables functionality without hav-
ing to recompile code. It is where the actual function that gets run is chosen/
resolved at run-time (say through a configuration file option), rather than
at compile time. This can be achieved in C by a function pointer. The
scheme enables changes without changing already compiled code. However,
in practical applications the ideal point for creating the function interface is
often at a “per index” level (3). For example, in building the element stiff-
ness matrix: the behaviour changes as the physics modelled changes, but it
gives unique values per element. Furthermore, assembling the composition
of each element’s contribution into the global stiffness matrix is a compli-
cated and critical task. The practical problem is further compounded by the
desire to take a working model and add to it. Continuing the above exam-
ple, plasticity is to be added to an elastic stiffness matrix build routine to
model elasto-plastic behaviour. Essentially the way to enable this is to add
a second function to the one function pointer. We define an entry-point as
equivalent to a function pointer that may have more than one actual func-
tion to run (5). It requires coding infrastructure beyond that supplied by
C’s standard libraries or simple function pointers.

Once again the results are interesting. As expected the difference between
inlined and calling a function that has all the work inside it is negligible.
Similarly, the difference between a static function and function pointer (in
the non-optimised case) is negligible, most likely attributed to prefetching.
As expected, the overhead in running an entry-point is significant (in the
non-optimised case).

While the optimisation abilities of the compiler had little influence in
the array allocation comparisons, they have significant benefits in the cost
of calling functions. In essence, dynamic adaptability of algorithms and
operations in C comes at low cost (except in obvious cases such as invoking
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a function call for a trivial operation in an inner loop that might have been
inlined).

4 A plugin model for adaptable HPC

The performance cost of coarsely object-orientation is negligible, and hence
it makes sense to adopt it for adaptability. To enable functional adaptabil-
ity, the only real option is to use entry-points (function pointers). This is
approximately 20% slower in the optimised case, but the overhead decreases
as the work done per function increases. Fine object-oriented methods also
provide functional adaptability, but are generally not advisable, even in C,
due to the number of objects that may be introduced, and the penalty for
loading many base pointers and lack of locality. Our results show that it is
better to have many arrays rather than an array of a struct.

Plugins are (compiled) code modules that are loaded into a running pro-
gram. The running program needs to know what to do with the plugin, and
the plugin has to subscribe to the requirements or conventions dictated by the
running program. If the program has entry points at key points of change,
then a plugin may add functions to that entry-point. Plugins only requires
that the entry-point manager is passed in from the running program. This
is similar to importing in Python, but in Python’s case, the management is
hidden from the users perspective. However, note that the location of these
entry-points are numerical scheme dependent, and the key to effective main-
tainability. Learning where to place them is an important design activity,
although adding new entry-points does not usually require major structural
change.

An infrastructure framework can support entry-points and plugins for
users. The generic creation of entry-points, their management, and the load-
ing of plugins are all reusable components. Also useful and reusable is a
scheme for creating new arrays and attaching them to the running system
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(that is, mimicking dynamic typing). Another reusable component is wrap-
ping the application in a Python style component interface, so that applica-
tions can be coupled. Our implementation of these, and many other features,
is in a framework named StGermain (http://csd.vpac.org/StGermain).

The user community (meaning the scientific programmer and modeler
community) for StGermain is quite large and growing (over 20 users spread
over 6 institutions over 2 years). This augers well for the long-term success
of our approach.

4.1 Snac

Snac is a mixed discretisation finite difference, finite element solid mechanics
code suited to crustal deformation problems. It is explicit, 3D and parallel.
It utilises a regular hexahedron element mesh. There are fourteen plugins
providing features such as

• elastic, plastic and viscous material models,

• Cartesian, cylindrical and spherical geometry models,

• temperature modelling,

• remeshing, and

• coupling to CitComS (another computational code).

Snac was primarily motivated by the need for a 3D parallel version of flac
(Finite Lagrangian Analysis of Continua). It uses the infrastructure de-
scribed in this paper to achieve rapid development. Further information can
be found at http://csd.vpac.org/Snac.

http://csd.vpac.org/StGermain
http://csd.vpac.org/Snac
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4.2 Snark

Snark is a finite element code originally created for mantle convection prob-
lems. That is, a solver for incompressible Stokes flow (that is, no inertial
terms). It is implicit, 3D and parallel. It also utilises a regular hexahedron
element mesh. Snark is able to switch between using an Lagrangian inte-
gration point integration scheme, and traditional finite element integration
schemes. There are approximately 30 plugins providing features such as

• various viscosity models,

• various input conditions,

• various energy solvers,

• various momentum solvers, and

• various Lagrangian integration schemes.

By utilising the infrastructure described in this paper, Snark is now a col-
lection of geodynamics codes, including mantle convection, slab initiation
and basin evolution modelling. The infrastructure enables high levels of
code reuse, so that the differences are only the particular numerics, physics
or boundary conditions specific to the problem. Furthermore, some peo-
ple within the group are only concerned with the further development of
numerical techniques, and through this mechanism they have a mechanism
to ensure the group can use them. Further information can be found at
http://csd.vpac.org/Snark.

5 Conclusion

Scientific software development had been impeded by the lack of any effec-
tive compromise between adaptability and performance. Most scientific soft-

http://csd.vpac.org/Snark
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ware developers target performance, by coding in C or Fortran from scratch.
Those developers that targeted adaptability, using C++ and Java, have not
gained traction for performance and complexity reasons. Our experience,
applications, and benchmarks show that performance need not be sacrificed
for adaptability. Using course-grain objects and plugins, and the flexibility
of C to support dynamic typing, we have built a framework that supports
both adaptability and performance, using conventional programing languages
targeted at performance. The growing size of the user community for our
framework augers well for its widespread adoption and influence.
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