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Evaluation of a nonlinear reef parametrisation
for steady flows
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Abstract

Modelling ocean circulation in regions of high topographic com-
plexity, notably around groups of reefs and islands, makes large de-
mands on spatial resolution. This problem has largely been overcome
by a parametrisation scheme in which the dynamics associated with
flow around unresolved reefs and islands are represented by modified
momentum equations on a relatively coarse grid. However, the per-
formance of this scheme deteriorates at high velocities, due to the in-
creasing importance of flow separation and eddy formation, processes
that are excluded in the original scheme. We extend the earlier model
to include a parametrisation of the nonlinear advective terms, and test
the performance of the modified scheme in the case of steady flow.
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1 Introduction

The spatial complexity of regions such as the Great Barrier Reef (gbr) poses
major problems for ocean circulation modelling. As an illustration, Figure 1
shows a sub-region of the gbr, specifically the Pompey Complex offshore
from Mackay. Reef shapes and sizes are such that explicit resolution of
reef outlines is in general computationally infeasible, at least for models at
regional and larger scales. Given that time steps for 2D models typically
vary with spatial resolution as ∆t ∼ (∆s)−3 , the cpu cost implications are
profound. This is especially so if such models are to be used in ecologi-
cal applications, where integrations over months and years can be required.
Such considerations led us to develop a relatively simple reef parametrisation
scheme [2], which has been successfully applied to tidal and other circulation
modelling in the gbr [3, 8].

In the original scheme [2] the effects of the nonlinear advective terms
were not considered. However, physical and scaling considerations suggest
that omitting them is not always justified, as evidenced by satellite imagery in
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Figure 1: Satellite image of the Southern gbr; sediment and biological
activity reveal eddies and other features of the tidally-dominated circulation.

areas of large tidal currents in the gbr (Figure 1). This shows pronounced
jets and eddies behind reefs, evidence of the importance of the advective
terms. Here we describe an extension of the scheme in [2] to incorporate a
parametrisation of the nonlinear advective terms. Section 2 briefly discusses
the original scheme. In Section 3 we consider how to extend this model to
include the advective terms numerically. The performance of the modified
scheme for steady flows through reefal regions is assessed in Section 4 using
an idealised numerical test bed.

2 Original reef model

Bode et al. [2] showed that, within the framework of a two-dimensional finite
difference (fd) model, reefs in each grid square are effectively represented by



2 Original reef model C1020

w !!"

b !!"

Reef

Reef

!!"

 5:1
15:1
25:1

5!!"

!!"

45:1

Figure 2: Schematic of idealised reef geometry, showing parameters w and b
for x-directed (left to right) flow. This is also the numerical testbed used in
the present work, with a width of 5 nautical miles (1 nm = 1.8532 km), and
an aspect ratio of 5 : 1; the depth is a constant 30m. The figure shows
the coarsest grid scale, ∆s1 = 5nm, used in the parametrised model, along
with successively higher levels of grid refinement, typical of those used in the
numerical experiments, and which all resolve the constriction explicitly.

a pair of parameters for each horizontal coordinate. These are termed the
‘gap fraction’ w and ‘width fraction’ b, as depicted in Figure 2. The scheme
was initially developed by considering quasi-1D flow through orifices with
linear bottom friction. This was then made increasingly more realistic by:

1. incorporating 2D (or ‘end’) effects from an analytical solution of Huth-
nance [7];

2. extending the formulation to accommodate quadratic bottom friction;
and

3. also allowing flow to occur over the tops of reefs as well as through the
gaps between them.
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With purely linear dynamics, the momentum equations for the various com-
ponent sections of each grid square are combined [2] to show that U , the
overall transport (or depth-integrated velocity) for x-directed flow depends
linearly on the imposed pressure gradient via an impedance formula, U =
igh(∂η/∂x)/σe . Here η is sea surface elevation, h(x, y) is ambient depth
and g is gravitational acceleration. This formula has clear electrical circuit
analogies. Locally, impedance is defined by σ = ω− ir/h , where r is a linear
friction factor and ω is the angular frequency of the forcing (for example,
tidal); all dependent variables are assumed to be proportional to eiωt. How-
ever within each grid square when reef elements are incorporated, the effective
impedance σe is due to the impedances of the reef and non-reef (or continental
shelf) components acting in series: σe = bσr + (1− b)σs . The impedance for
the reef component (due to flow both over the reef crest and through inter-
reef gaps) is given by an impedance in parallel: σ−1

r = [w/σs + d(1−w)/σc],
where d = hc/hs is the ratio of water depths for the reef crest and shelf.

Although the impedance approach provides useful conceptual insights, its
application is limited to simple analytically tractable cases. Of more value to
practical numerical modelling in areas such as the gbr is the fact that this
approach also yields equivalent momentum equations. Further, the linear
model can be generalised to incorporate the more realistic case of quadratic
bottom friction. The net result in this situation is an effective horizontal
momentum equation, which for x-directed flow is written as

α
∂U

∂t
= −gH

∂η

∂x
− β

λ|U|U
H2

, (1)

where U = (U, V ) is the transport vector, H = h+η is total water depth, and
λ is a quadratic bottom friction coefficient. At this stage the nonlinear ad-
vective terms have been excluded from consideration, whereas Coriolis terms
are omitted for simplicity. Importantly, the terms α and β that act to modify
the effective pressure gradient and bottom friction across a given grid square
are expressed in terms of the reef parameters w and b, and thus are fixed
factors that depend on reef geometry in the grid square under consideration.
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For example, in the most basic quadratic friction model presented in [2], a
case in which no flow is permitted across reef crests, α = (1− b) + b/w + Φ
and β = (1 − b) + b/w2 + 1.56w−0.56Φ , where Φ(w) is the term associated
with 2D end effects, as determined by Huthnance [7]. Further details and a
number of generalisations of this model can be found in the original paper.

Results from this parametrised scheme compare closely with those from
high-resolution explicit simulations that are orders of magnitude more expen-
sive computationally [2]. The schemes were assessed in a numerical testbed
(Figure 2), a constricted channel in which flow is driven by pressure (sea
level) differences at the ends. The dimensions of the channel (25 × 5 nm;
1 nm = 1.8532 km) are typical of those found across sections of the gbr.
The coarsest resolution uses a grid spacing of ∆s1 = 5nm (or 1 : 1 reso-
lution), at which scale the “reef” in Figure 2 is not resolved by the grid,
and hence must be parametrised by setting appropriate w and b values. In
all other simulations, the reef is explicitly resolved, using successive levels of
spatial refinement. In present work these are 5, 25, 75 and 125 : 1 . For the
final case, the grid length is reduced in size to ∆s125 = ∆s1/125 ≈ 74m. The
model domain now contains around 8× 104 grid points, versus just 6 for the
coarsest (parametrised) model.

When applied to circulation modelling in the gbr, the scheme is shown to
be accurate and flexible: once the parameters for each grid square are estab-
lished, the equations of motion can be solved by any standard fd scheme. In
our case this is the implicit model described in [1]. The underlying problem
for application of the scheme is to estimate the effective w and b for each
grid square in each horizontal direction. Briefly, this involves using high res-
olution digitised outlines of reefs, islands and bathymetry. Within each fd
square, this information is incorporated into a high resolution channel flow
setup, similar to that of Figure 2. Steady-state flow is then computed for a
given pressure gradient, and from the results and the additional constraint of
reef area, w and b values are determined. This procedure is computationally
intensive but has been automated, and needs to be performed just once for
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a given location and grid setup.

Despite the computational advantages and economy of such an approach,
its use does not appear to have gained significant acceptance over traditional
methods. For example, a recent 3D model on a 1 km grid of the complex
region around Singapore [11] employs “manual node-to-node editing” to treat
subgrid-scale features such as causeways, narrow channels and small islands.
Our approach is designed to parametrise this type of geometric detail in a
dynamically consistent and accurate manner. Studies that have attempted
to parametrise subgrid-scale geometry are the original analytical models of
Huthnance [7], and a relatively simple approach by Metzger and Hurlburt [9]
that used modified frictional dynamics to incorporate the effects of flow over
unresolved sills in an ocean general circulation model. Recent discussions
of the importance of adequate spatial resolution in ocean models can be
found in [6] and [12]. A related but simpler procedure has been successfully
developed for large-scale spectral wind-wave modelling [4].

3 Parametrisation of advective terms

In the above model, we assumed that advective terms can be ignored. The
validity of this assumption can be assessed by scaling analysis or by direct
numerical solution; here we use the latter approach. The dynamics are gov-
erned by the continuity and momentum (x only, for brevity) equations. In
transport form these are expressed as

∂η

∂t
+

∂U

∂x
+

∂V

∂y
= 0 , (2)

α
∂U

∂t
+

∂

∂x

(U2

H

)
+

∂

∂y

(UV

H

)
− fV = −gH

∂η

∂x
− β

λ|U|U
H2

, (3)

where α and β arise from the existing reef model of Section 2, f is the Coriolis
parameter, and other variables have been already defined.
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Figure 3: Numerical solutions for a constant head difference of ±5mm at
the channel ends, using the highest grid scale of 1/125 of the parametrised
resolution. Equi-spaced surface elevation contours (∆η = 0.2mm) and ve-
locity vectors are shown: (i) without advective terms, top panel; (ii) with
advective terms included, bottom panel. Vectors are shown at every 7th grid
point to aid visibility. (Note: magnify pdf figures to show high-level detail.)
The reef constriction is offset to reduce downstream boundary effects.

In order to demonstrate the importance of the advective terms, steady
flow is computed in the testbed channel of Figure 2. This is done by imposing
what might be considered moderate forcing in the context of flows through
the gbr: constant elevations of η = ±5mm at the ends of the channel, or
a total head loss of 10mm over its 25 nm length. Note also that no flow
is allowed over the reef crest in the present case. The model is integrated
to steady-state from an initial condition of quiescence. The grid resolution
employed, ∆s125 ≈ 74m, is the finest of any used in the present study. This
is 1/125 of the coarsest possible grid size, ∆s1 = 5nm.

Figure 3 shows computed velocities and sea levels. The plots correspond
to: (i) no advective terms (that is, the original model [2]); and (ii) with the
advective terms included. Respective maximum velocities, averaged across
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the reef gap midline, are 0.60 and 0.33 m s−1. Pressure contours and velocities
in (i) are approximately symmetric about the gap, so that this basically
corresponds to frictionally-modified ideal flow.

Inclusion of the advective terms is seen in (ii) to reduce the transport
markedly, at least for this fairly restricted geometry, but it also results in
pronounced changes to the nature of the flow. This now exhibits the charac-
teristic features of a slowly diverging jet. Almost all the pressure variations
occur upstream of the efflux region, so that additional form drag would be
expected.

Bernoulli arguments produce sufficiently accurate flow estimates if re-
quired. Assuming a non-divergent jet downstream of the gap, and making
sensible (conservative) approximations for the influence of quadratic bottom
friction within the channel, we obtain

ugap ≈
[

2g∆η

1− w2 + 2λwL/h

]1/2

, (4)

where ∆η is the total head loss along the channel of total length L. Ignoring
friction (λ = 0) gives ugap = 0.45 m s−1, whereas the frictional approximation
of 0.31 m s−1 is much closer to the value of 0.33 m s−1 computed above.

Numerical approach: we aim to provide a numerical scheme to represent
advective processes with acceptable accuracy for coarse-scale (parametrised)
models of flow around reefs. To this end it is instructive to recast the advec-
tive terms in equation (3): by subtracting U/H times the continuity equa-
tion (2) from the advective terms we obtain

∂

∂x

(U2

H

)
+

∂

∂y

(UV

H

)
=

[
U

H

∂U

∂x
+

V

H

∂U

∂y

]
− U

H

[
∂η

∂t
+

U

H

∂H

∂x
+

V

H

∂H

∂y

]
.

(5)
Since (U, V )/H is depth-averaged velocity, the individual bracketed terms
in (5) have two quite distinct interpretations. The first bracket has the usual
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form of the advection of U by the velocity field. The second is associated
with changes in water depth, or equivalently could arise from changes in
the channel cross-section. Importantly, the second bracket has a geometric
origin: apart from small variations associated with changes in water level,
the spatial derivatives are determined by the local geometry, and are not
associated with variations in the prognostic variables U and V .

The point of writing the advective terms in this form becomes clearer
when we now consider our constant depth channel from two distinct view-
points, depending on the grid resolution that applies. The first corresponds
to a high resolution grid, such as that in Figure 3, where all bathymetric
detail is explicitly resolved. In this case all three terms in the second bracket
are effectively zero at each active computational point, and the advective
processes are thus associated with explicitly resolved spatial gradients in the
transport field, as given by the first bracket. These effects will be most
pronounced in the immediate neighbourhood of the reef constriction.

Importantly, this situation is reversed for a parametrised reef model,
where the geometric detail around the constriction cannot be resolved by
the grid. In this case, using the coarsest grid scale (∆s = ∆s1), both
∂U/∂x and V are sensibly zero, and thus the first bracket can be ignored.
Therefore the advective accelerations, when averaged over any grid square,
need to be given accurately by an appropriate numerical representation of
the second bracket in equation (5). In other words, at the parametrised scale,
the reef constriction in each grid square needs to be represented by bathymet-
ric variations. We recognise here that these terms have essentially the same
form as the advective terms for flow in a channel of varying cross-section [5].
In the case of our constant-depth constricted channel, it is actually width
rather than depth that is changing at the subgrid scale. Therefore, guided
by this channel flow analogy, we replace H by an effective depth, H ′ = wH ,
in order to maintain the appropriate cross-sectional area, H(w ∆s) = H ′∆s ,
across the constriction.

However, modifying the definition of H in a numerical scheme is not
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sufficient to obtain accurate parametrised solutions. Further consideration
of the flow in Figure 3 shows that, at the coarse scale, the dominant advective
term in equation (5) is (U/H)∂U/∂x. Assuming the basic flow is from left
to right (U > 0), then if we encounter a region of decreasing depth (or cross-
sectional area) over one grid square, this term is negative and the net effect
in the momentum equation is resistive, thus reducing the transport in the
channel for a given pressure gradient. If on the downstream side the flow
fanned out as in Figure 3(i), then by the same argument, the opposite effect
would apply, meaning that this term would have no net effect on the flow.
This is counter to reality and to the nature of the flow revealed in Figure 3(ii).
The flow downstream of the constriction has separated and resembles a jet,
with a cross-sectional area that remains approximately constant. That is,
(U/H)∂U/∂x is effectively zero downstream of the constriction, and hence
the contribution of the advective terms to the momentum balance must be
determined by upstream processes. This physical situation has to be reflected
by its numerical representation, and therefore requires a special treatment.

In our numerical reef model, we compute all advective terms in the form
given by equation (5). Following the arguments given in the paragraph above,
we compute the second bracket of (5) in an upstream sense, with H replaced
by the effective depth, H ′ = wH . If the value is negative, this means that
the flow is entering a constriction, regardless of the sign of U , and hence
corresponds to flow retardation. In such a case this upstream value of the
derivative of H ′ is used in calculating the second bracket of (5). By contrast,
if the term is positive, it is set to zero; otherwise it would spuriously accel-
erate the flow in a grid square downstream of the constriction. Clearly this
approach is a crude representation of reality: we have ignored the details of
the flow downstream of the constriction, where some small proportion of the
pressure field will be recovered. Although it might be possible to “tune” the
scheme to give improved results over the current model, this temptation has
been avoided. The present approach is simple to implement numerically, and
appears to give quite acceptable results, as described in the following section.
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Note that our approach does not result in a low order upwind scheme,
which would be highly diffusive [10]. Here, the term that parametrises the
form drag associated with the constriction, and hence leads to a reduction
in the transport through it, is computed in an upstream sense, because this
mimics the physical processes that apply. This derivative term is geometric.
It does not involve differences of prognostic variables, and hence does not
introduce the problems that are normally associated with upwinding. Note
also that if centred differences were used for an isolated reef element, the
value computed for this term would be zero, and hence such a scheme would
not “see” the constriction. In our model, the first bracketed term is still
computed by the standard fd approach described in [1]—its effects will be
negligible in the case of a parametrised reef element, as discussed above.

4 Results

The modified reef parametrisation model is assessed by using the same nu-
merical testbed as in [2] (Figure 2) for the case of steady flow only; extensions
to tidal forcing will be considered elsewhere. Results are compared against
those obtained by explicit resolution of the constriction in the channel. Un-
like [2], only one geometry is discussed here (w = b = 0.2), but this is a
demanding case. It is also representative of the values that would apply in
modelling a highly constricted reefal area (such as in Figure 1) at a relatively
coarse spatial scale, in this case ∆s1 = 5nm. Progressive grid refinements
as large as 125 : 1 are used in the high resolution experiments. In addition,
a number of different pressure gradients are imposed along the channel, in
order to produce a wide range of velocities through the constriction.

Figure 4 shows the effect of grid resolution on the average transport
computed in the channel. The leftmost points correspond to the 1 : 1 or
parametrised grid. For the various cases in which the constriction is ex-
plicitly resolved, the computed transports are higher than the parametrised



4 Results C1029

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

Resolution

T
ra

ns
po

rt
 (

m
2 s−

1 )
0.005 m
0.01 m
0.02 m
0.04 m
0.08 m

Figure 4: Transport across the constriction as a function of grid resolution,
for various imposed pressure gradients along the channel. The pressure gra-
dient is shown by the head difference along the channel: for example, 0.01m
corresponds to ∆η = ±5mm at the channel ends. Resolution is shown as
a fraction of the parametrised grid size, ∆s1 = 5nm; thus ‘125’ represents
the finest grid used, ∆s125 = ∆s1/125 , and corresponds to the flow shown
in Figure 3(ii).

result but tend to decrease with grid size. This is not unexpected because
the assumption of no flow divergence downstream of the reef constriction is
not completely valid. Nevertheless, it is satisfying to note that the results
obtained from the parametrised model are not obviously inferior to those ob-
tained by high resolution computations that are 4 to 5 orders of magnitude
more expensive computationally.

Further information on the accuracy of the new scheme is obtained by
comparing these solutions with those obtained from the original scheme [2],
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that is, when the advective terms are eliminated. These results are given in
Figure 5. Firstly, note that the parametrised model is extremely accurate
in the non-advective case, as reported in [2]. Results for the case when
advection is parametrised are not as accurate, but are still most acceptable.
However, it is clear that for steady (or slowly varying) flows, at least with
highly constricted geometries, it is unsafe to ignore the advective terms.
On a log-log scale, the two steady-state families of curves are parallel, with
exponent 1

2
, as could be expected from dimensional considerations: this is the

basis of equation (4). Explicit resolution of flow details, even with extremely
fine grids, is obviously difficult in cases where the flow is separating and
eddying in the lee of these bluff “reefs”, as should be apparent from Figure 3.
However, the parametrised model, which is concerned only with calculating
gross measures of the flow, averaged over a coarse grid square, would appear
to perform almost equally as well as the far more costly explicitly-resolved
simulations.

5 Discussion

An extension has been presented to the reef parametrisation scheme in [2] to
cover situations where strong flows through reef gaps can cause downstream
separation and eddying. When large pressure gradients and pronounced re-
strictions in the flow geometry combine to produce high velocities, the ad-
vective terms cannot be ignored in the momentum balance. Indeed they are
often a dominant component, and hence need to be incorporated faithfully
in numerical models. Moreover, the geometric complexity of such regions
means that a parametrised approach to reef modelling may be required.

Here we approximate the form drag via a formulation that takes account
of the geometric effects that tend to dominate the computation of the ad-
vective terms when subgrid-scale reef details have to be parametrised. The
method is based on a simple heuristic approach, although it is motivated
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Figure 5: Transport across the constriction as a function of imposed pres-
sure gradient with a range of grid resolutions, for both advective and non-
advective cases. Resolution is given as a fraction of the parametrised grid size,
∆s1 = 5nm; 125 : 1 corresponds to the finest grid used, ∆s125 = ∆s1/125 .
The pressure gradient is shown by the head difference along the channel: for
example, 0.01m corresponds to ∆η = ±5mm at the channel ends.

by both observations and the nature of high resolution numerical solutions.
This scheme is able to reproduce the gross characteristics of the flow, and
comparisons with high resolution simulations demonstrate a quite acceptable
accuracy. The new scheme is not as accurate as the original procedure [2],
where the parametrised model produced results that were only marginally
different from those obtained from very high resolution grids. However, the
new model covers a much wider dynamical range, and hence is significantly
more valuable in modelling the types of flows that are encountered in reality,
such as in areas of the gbr. More detailed testing across a range of reef
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gap parameters (0 ≤ w, b ≤ 1) would be useful, but extremely expensive
computationally, and has not yet been attempted.

The scheme has been applied to the computation of flows across large
sections of the gbr, for example, in the southern gbr and in Torres Strait.
Both are demanding areas for modelling because of the very narrow gaps be-
tween the individual reefs and the high pressure gradients that apply. These
factors both result in advectively-dominated dynamics, and hence need to
use the present scheme to accurately portray the dynamics when reef de-
tail has to be parametrised. Incorporation of the advective terms via the
approach described here has led to significantly improved results for tidal
models when compared against field data [3]. The present reef parametri-
sation scheme is not only accurate, but is relatively simple to implement in
existing circulation models. It also has other advantages: for example, it is
effective in minimising numerical problems that can arise when bathymetry
changes rapidly, such as at the edge of a continental shelf. Finally, note
that fine-scale realism is not the objective of the present work: rather, the
aim is to accurately parametrise the resistance associated with subgrid-scale
flow around reefs. Should solutions be required at finer spatial scales, the
parametrised model can be used to generate realistic open boundary condi-
tions, which can then be applied to nested models that provide more explicit
resolution of spatial detail over limited-area domains.

Acknowledgments: Comments by two anonymous referees are much ap-
preciated. Figure 1 is provided courtesy of nasa/gsfc/larc/jpl,misr.1

1 http://www-misr.jpl.nasa.gov/gallery/galhistory/2001_apr_11.html

http://www-misr.jpl.nasa.gov/gallery/galhistory/2001_apr_11.html


5 Discussion C1033

References

[1] L. Bode and L. B. Mason. Application of an implicit hydrodynamic
model over a range of spatial scales. In D. Stewart et al., editors,
Computational Techniques and Applications: CTAC93, pages 112–121.
World Scientific Press, 1994. C1022, C1028

[2] L. Bode, L. B. Mason and J. H. Middleton. Reef parameterisation
schemes with applications to tidal modelling. Prog. Oceanogr.,
40:285–324, 1997.
http://dx.doi.org/10.1016/S0079-6611(98)00006-8 C1018,
C1019, C1021, C1022, C1024, C1028, C1029, C1030, C1031

[3] D. M. Burrage, C. R. Steinberg, L. B. Mason, and L. Bode Tidal
corrections for Topex altimetry in the Coral Sea and Great Barrier
Reef Lagoon: comparisons with long term tide gauge records.
J. Geophys. Res., 3241, 2003.
http://dx.doi.org/10.1029/2000JC000441 C1018, C1032

[4] T. A. Hardy, L. B. Mason and J. D. McConochie. A wave model for
the Great Barrier Reef. Ocean Engng., 28:45–70, 2000.
http://dx.doi.org/10.1016/S0029-8018(99)00057-8 C1023

[5] J. J. Dronkers. Tidal computations in rivers and coastal waters.
North–Holland, 518 pp., 1964. C1026

[6] S. M. Griffies. Fundamentals of ocean climate models. Princeton
University Press, 518 pp., 2004.
http://www.pupress.princeton.edu/titles/7797.html C1023

[7] J. M. Huthnance. Flow across reefs or between islands, and effects on
shelf-sea motion. Cont. Shelf Res., 4:709–731, 1985.
http://dx.doi.org/10.1016/0278-4343(85)90038-X C1020,
C1022, C1023

http://dx.doi.org/10.1016/S0079-6611(98)00006-8
http://dx.doi.org/10.1029/2000JC000441
http://dx.doi.org/10.1016/S0029-8018(99)00057-8
http://www.pupress.princeton.edu/titles/7797.html
http://dx.doi.org/10.1016/0278-4343(85)90038-X


References C1034

[8] M. K. James, P. R. Armsworth, L. B. Mason and L. Bode. The
structure of reef fish metapopulations: modelling larval dispersal and
retention patterns. Proc. Roy. Soc. London, B269:2079–2086, 2002.
http://dx.doi.org/10.1098/rspb.2002.2128 C1018

[9] E. J. Metzger and H. E. Hurlburt. Coupled dynamics of the South
China Sea, the Sulu Sea, and the Pacific Ocean. J. Geophys. Res.,
101:12331–12352, 1996.
http://www.agu.org/pubs/crossref/1996.../95JC03861.shtml

C1023

[10] P. J. Roache. Computational fluid dynamics. Hermosa Publishers,
434 pp., 1972. C1028

[11] P. Tkalich, W. C. Pang and P. Sundarambal. Hydrodynamics and
eutrophication modeling for Singapore Straits. Proc. 7th workshop on
ocean models for the APEC Region, Singapore, pages 5.1–5.9, 2002.
C1023

[12] L. J. Waterman. Numerical modelling: building the world ocean. Bull.
Aust. Meteorol. Oceanogr. Soc., 11:112–116, 1998. C1023

http://dx.doi.org/10.1098/rspb.2002.2128
http://www.agu.org/pubs/crossref/1996.../95JC03861.shtml

	Introduction
	Original reef model
	Parametrisation of advective terms
	Results
	Discussion
	References

