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Optimisation of a spline based
Eulerian–Lagrangian transport solver
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Abstract

Consider solute transport in saturated porous media. Eulerian–
Lagrangian methods provide efficient numerical solutions with min-
imal numerical dispersion. We discuss the optimisation and paral-
lelisation of a serial, spline based Eulerian–Lagrangian code (elm2d,
Fortran 90) on a 64 bit nec sx-5 platform to support high-resolution
numerical experiments. The aim was to reduce execution times by
an order of magnitude whilst maintaining numerical accuracy. Profil-
ing analysis indicated potential inefficiencies in the spline and dif-
fusion subsystems of the code. Vectorisation of these subsystems
achieved more than an order of magnitude speed increase. Use of
either OpenMP or sx-5 microtasking directives was also effective in
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further reducing computational expense. Benchmarking optimised so-
lutions against 32 bit serial solutions generated on a different plat-
form indicated good numerical agreement of overall solute distribu-
tions and plume spatial moments for strongly heterogeneous problems
with O(107) nodes. More than twenty-fold reduction in sx-5 execu-
tion times was achieved through vectorisation and parallelisation, but
came at the cost of increasing memory demands. A user configurable
striping parameter was introduced to the algorithm to determine the
in-core storage, yielding a trade-off between execution speed and re-
source demand.
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1 Introduction

Most potable water supplies in use around the world are subterranean. Pro-
tection of the quality of these sources is a prime human health issue, espe-
cially in locations where industrial and urban activities can readily lead to
subsurface contamination. Because direct observation of groundwater move-
ment and quality is difficult, much attention has been given to the develop-
ment of theoretical methods of predicting the migration of contaminants as
the groundwater moves through the heterogeneous subsurface. The problem
is essentially one of advection, coupled with a local dispersion mechanism,
where the carrying fluid moves through a randomly heterogeneous hydraulic
conductivity field [5].

Classical methods of solving the transport equations are plagued by nu-
merical dispersion, that is, where steep gradients in solute concentration are
unable to be predicted accurately by the numerical techniques. Eulerian–
Lagrangian methods (elm) are popular tools for overcoming the numerical
dispersion problem, although they can suffer from inaccuracies in the tracking
and interpolation parts of the Lagrangian characteristics [1, 3]. Spline-based
elm methods have the potential to minimise these problems [8], permitting
high-resolution studies of scale-dependent effects in solute transport even
for large Peclet number regimes [9]. One spline-based solver is elm2d [8],
a serial Fortran 90 code designed specifically to solve the two-dimensional
transport problem to high accuracy, given a divergence-free fluid velocity
field as input. elm2d uses a regular finite-difference grid and has been run
successfully for problems with O(107) nodes. However, for such grid di-
mensions the execution times are typically large (days or weeks), effectively
preventing the extension of simulations to finer grid resolutions. This work
discusses the conversion of elm2d to a vectorised multi-threaded application
and the subsequent benchmarking of the new code, called elm2d-p, against
prior results.
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Figure 1: Code structure

2 ELM2D — Basic code structure

The general program structure is shown in Figure 1. The cpu intensive parts
of the code are the tracking, interpolation and diffusion routines. Tracking
involves setting up and solving an ode at each point in the data domain; and
is completed once at the beginning of every run. The transport propagation
routines then propagate the data forward for a specified number of steps,
using each of the interpolation and diffusion routines once at every step.

In this version of the code a taut spline function is used, and both tracking
and interpolation make heavy use of two taut-spline related routines. The
first, tautsp, describes a suitable taut spline by computing the second deriva-
tive at each point and the second, tsvalu, computes a selected derivative —
usually the zeroth or first — at a given point on the curve. elm2d contains
support for other spline interpolators, including linear, quadratic and cubic
orders. These interpolators are less attractive in terms of solution accuracy
and have not been optimised, but are likely to admit similar vectorising and
multi-threading efficiencies as the taut spline interpolator.

Two data sets were used; a “small grid” (nx, ny) = (256, 256) domain
running typically 160 propagation time steps, and a much larger (10001,1001)
domain running initially 5 propagation time steps and later 500 steps. This
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latter “large grid” configuration represents a typical experiment for the serial
code.

3 Small grid optimisations

Initial serial performance analysis with the large grids was not practical on
the sx-series platform due to the cpu time required. However, previous exe-
cution of the serial code on a less expensive, slower platform (Sun Enterprise
e450 with 300 MHz Ultrasparc chipset, Sun hpc Fortran 95 v6) yielded run
times of more than 2 cpu weeks in 32 bit mode. Returning to the sx-series
platform (nec sx-5, fortran90/sx r285), and using the small grid sets
we obtain the benchmark performance information shown in Table 1.

The sx-5 [2] is a vector computer with sixteen 8 Gflop processors and
128 Gbyte of memory per node, and a recorded Linpack Rmax and Nhalf of
123 Gflops and 1340 Gflops respectively [6]. The Average vector length in
Table 1 and others has an upper limit of 256 (the length of a vector register)
and gives an indication of how efficiently the vector hardware is being used.
The Vector operation ratio indicates how frequently the vector hardware is
used. I-Cache and O-Cache miss refer to time lost due to instruction and
operand (data) caches respectively; well-vectorised code makes little use of
cache so this overhead is almost exclusively from scalar parts of the appli-
cation. The sx-5 uses banked memory to hide memory latency, and a high
number in the Bank conflict field of this or another table would suggest that
memory accesses are not evenly distributed over banks. (This often occurs
when loop strides are a power of two.)

In Table 1 tautsp and tsvalu are used for taut spline interpolations,
interp2d tautsp and vcspline2 drive interpolation for concentration prop-
agation and tracking respectively, mult2 and findz are used in diffusion
and icsqrt is the driver for diffusion. In the case of this run, an addi-
tional 21 seconds was spent in library routines (not shown) providing pointer
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Table 1: Typical serial code performance and profile for a small grid prob-
lem.

Real time (sec) 621.79
User time (sec) 602.61
System time (sec) 3.16
Vector time (sec) 36.20
Mflops 33.82
Average vector length 77.87
Vector operation ratio (%) 26.59
Memory Size (Mbyte) 48.03
I-Cache miss (sec) 5.92
O-Cache miss (sec) 116.39
Bank conflict (sec) 0.19

Routine Time (%) cpu time (sec) No. calls Time/call (msec)
tautsp 40.2 242.91 12109560 0.02
interp2d tautsp 26.1 157.84 160 986.47
tsvalu 17.9 108.49 218807912 0.00
mult2 3.3 19.85 320 62.05
vcspline2 3.1 18.75 791164 0.02
findz 2.9 17.26 480 35.96
icsqrt 1.2 7.30 160 45.63

allocation and nullification.

The low Mflops and vector time indicate that the serial application makes
almost no use of the vector processor. For optimisation a profile of where
time is spent is useful; Table 1 shows the most significant routines in the
profile. Armed with this analysis, we commence the optimisation of the code
using inlining and vectorising techniques.

3.1 Inlining

Of the three routines comprising 80% of the total run time (interp2d tautsp,
tautsp, tsvalu), two have very high call counts and very short per-call times.
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Vector computers can have relatively higher subroutine call overheads than
scalar processors so a significant improvement may be gained by expand-
ing such routines inline. The sx compiler was able to automatically expand
tsvalu inline, reducing user time by 164 seconds to 438 seconds.

Note that the decrease in user time is greater than the user time originally
attributed to tsvalu: this is due mostly to improved optimisation of the
calling routine interp2d tautsp. Minor differences in performance due to
differences in machine load and cache use are also to be expected, but are
unimportant at this stage.

3.2 Taut spline vectorisation

Vectorisation of tautsp was not trivial: the routine consists of a large, com-
plex loop over ntau points of the curve with many data dependencies. Fur-
thermore ntau is quite small, typically about 20, severely limiting the effec-
tiveness of vectorisation. An alternative means of improving performance lies
in the fact that the taut spline calculations at each point in the domain are
independent, therefore vectorisation can be performed across curves rather
than within them. However, this requires changes to the structure of routines
calling tautsp as well as to tautsp itself.

Closer investigation of the tracking and interpolation code, described in
more detail in the next two sections, reveals that about 1.6 million calls to
tautsp were made by the tracking code and 10.5 million by the interpolation
routine. The interpolation code was therefore first modified to take advantage
of a vectorised version of tautsp.

The main challenge in vectorising tautsp, other than the sheer complex-
ity of the routine, was that in many places different calculations were used
depending on whether a variable was greater than, less than or equal to some
given value. Vector processing must either perform all computations in all
cases and mask out the unwanted results or compress the values of interest
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into shorter vectors for processing. Either of these reduces the efficiency at
which the vector processor can operate. Fortunately, the algorithm shows
considerable symmetry and with some manipulation common factors could
be extracted, leaving a much more vector friendly execution path.

The key loop in the interpolation routine interp2d tautsp has the fol-
lowing basic structure:

do j=1,ny

call tautsp

end do

do i=1,nx

do j=1,ny

do k=-8,8

call tsvalu

end do

call tautsp

call tsvalu

end do

end do

This was rearranged to call the vectorised implementation of tautsp (v tautsp)
on a collection of points simultaneously:

call v_tautsp(1:ny)

do point=1,nx*ny

! prepare arrays of independent points

end do

do k=-8,8

do point=1,nx*ny

call tsvalu

end do
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Figure 2: Structure of tracking code

end do

call v_tautsp(1:nx*ny)

do point=1,nx*ny

call tsvalu

end do

The main effect of this is that many calls to tautsp are replaced by a single
call to v tautsp. This reduces call overhead and allows the vectorised taut
spline algorithm to be used effectively. Another benefit is that tsvalu, which
was also modified to allow efficient vectorisation of loops incorporating it,
operates over a longer and more efficient vector length.

The performance after this modification was 3.8 times faster overall than
before optimisation of interpolation; with the interpolation code itself run-
ning more than 30 times faster than before.

3.3 Vectorising the tracking code

Extending this optimisation to the tracking code was more complicated due
to the structure spanning several routines, as depicted in Figure 2.

Each routine contributes to the algorithm as follows:
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1. track2d csp: This routine uses tautsp to set up some initial curves,
then sfootfinding to perform tracking at each point in the domain.

2. sfootfinding: This routine uses a convergence loop calling srk4 in
the process of solving an ode for the current point. It is this conver-
gence loop which most complicates the vectorised implementation of
the tracking code.

3. srk4: This is a fourth-order Runge–Kutta ode solver, see [7]. It es-
sentially consists of a series of calls to sderivs to compute gradients
at half and full step lengths.

4. sderivs, vcspline2: The algorithm for computing gradients is con-
tained in vcspline2, for which sderivs is a wrapper. It first uses
tsvalu and tautsp to set up a taut spline and then calls tsvalu again
for the zeroth and first derivatives at each step.

An effect of the convergence loop in sfootfinding is that different points
in the domain require a different number of calls to the lower level routines
in order to converge. This was managed via a “work list” of points need-
ing further computation; the list is created at the start of each iteration
and the results copied back at the end. The “work list” approach minimises
redundant calculations and uses the vector processors efficiently. This opti-
misation reduced the tracking time in the small test set by roughly 30 times,
leaving the diffusion routines mult2 and findz as the dominant expenses in
the profile.

3.4 Diffusion

Optimisation of mult2 was straightforward: removing pointer allocation and
deallocation from within loops allowed the loops to vectorise. The speedup
of this routine was in the order of 500 and its impact on performance was
reduced to insignificance.
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The algorithm for findz is iterative and of the form:

do i=2,nx*ny

zf(i) = zf(i) - am2*zf(i-1) - am1*zf(i-ny)

end do

The two-dimensional nature of the algorithm (the zf(i-ny) part) allows a
limited degree of vectorisation over (1:ny). The process by which the code
was rearranged is complicated, but leads to a structure of approximately:

! map zf(ny*nx) => w(ny,nx)

do i=2,nx

do j=2,ny ! partially vectorisable

w(j,i) = w(j,i) - am2*w(j-1,i)

end do

do j=2,ny ! vectorisable

w(j,i) = w(j,i) - am1*w(j,i-1)

end do

end do

! map w(ny,nx) => zf(ny*nx)

In this form the first loop can be partially vectorised with an iteration macro,
and the second loop is vectorised albeit over a shorter vector length (ny).
While the performance is mediocre it is still considerably faster than an
entirely scalar implementation.

3.5 Summary

With all of these optimisations the small grid performance is approximately
20 times higher than the original code. Figure 3 shows the time spent in each
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(a) All optimisations

(b) Close-up of interpolation, tracking and diffu-
sion optimisations

Figure 3: Performance after various optimisations, by code section.
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Table 2: Original and optimised performance of a small grid problem.
Metric Original Optimised
Real time (sec) 621.79 38.57
User time (sec) 602.61 28.46
System time (sec) 3.16 1.03
Vector time (sec) 36.20 16.43
Mflops 33.82 839.79
Average vector length 77.87 255.07
Vector operation ratio (%) 26.59 97.61
Memory size (MB) 48.03 112.03
I-Cache miss (sec) 5.92 0.46
O-Cache miss (sec) 116.39 1.77
Bank conflict (sec) 0.19 1.53

section of the program after each stage of optimisation. The times for each
section are determined from the top few routines in the profile, according
to which parts of the code they belong. ‘Miscellaneous’ includes all other
routines; its impact is relatively small and can be ignored for the moment.
The optimised small grid performance is given in Table 2.

A few aspects of the optimised performance are worth noting. One is
that the miscellaneous part of the program has also been improved: this
is due largely to the removal of pointer allocation and deallocation from
mult2. Another is that the vector time has actually been reduced due to
more efficient use of the vector processor. Finally, the memory size has
increased due to the use of work arrays storing the entire domain rather than
only a single point. This last point is discussed in more detail in the next
section of this report.
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4 Large grid optimisations

4.1 Memory use and optimisation

With the previous optimisations a run using the large grid becomes plausible.
Initially a five-step run was used, which skewed the performance heavily
toward that of the tracking code but nonetheless gave an idea of the resources
required for a typical experiment. The code ran at over 2.3 Gflops, used
10.7 Gbyte of main memory and ran for about 2500 seconds.

This performance is much higher than that of the small grid problem;
however, memory use is also higher, at about 10.7 Gbyte. The sx-5 has
128 Gbyte of main memory so this is not excessive; however, the ability to
reduce memory requirements is desirable for portability to smaller machines
and to support still larger problem domains.

The largest users of memory in the vectorised code are the work arrays
used, mostly by v tautsp, in the tracking and interpolation parts of the
program. To reduce memory use work in these parts of the program is par-
titioned into ‘stripes’ along one dimension of the domain, for example, along
the ny direction. Rather than simultaneously computing at all points, the
points in a single stripe are computed at each iteration. The stripe size
parameter is easily configurable by the user, from ny stripes of 1 column
each to 1 stripe of ny columns — that is, the entire grid in one stripe. A
minimum stripe size reduced vector operation ratio marginally and vector
length somewhat and increased call overhead to v tautsp, consequently low-
ering performance slightly, but also reduced memory use for these parts of
the code to about 1 Gbyte. Parts of the diffusion code use more memory
than this so the overall memory use is down to about 1.7 Gbyte; this is
still realistic on a modern desktop computer. Details of performance in each
configuration are supplied in Table 3.
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Table 3: Performance of a large grid problem over five time steps under
different memory stripe size settings.

Metric Stripe size ny Stripe size 1

Real time (sec) 2548.36 3484.17
User time (sec) 2381.93 2931.20
System time (sec) 27.45 21.16
Vector time (sec) 2085.82 2481.66
Mflops 2328.24 1890.88
Average vector length 255.73 212.38
Vector operation ratio (%) 99.63 99.45
Memory size (Mbyte) 10720.03 1712.03
I-Cache miss (sec) 4.42 15.93
O-Cache miss (sec) 39.58 45.39
Bank conflict (sec) 20.94 20.72

4.2 Parallelisation

Since the memory used is quite large, at least for the fastest configuration
(that is, maximum stripe size), it is reasonable to use multiple processors
to complete each run as quickly as possible. With this goal microtasking
directives were added to a few key loops to implement a simple parallel
version of the code. Initially these used the sx native directives, but were
translated to use OpenMP for further portability. The parallelism gained is
quite low but with a small number of cpus the real run-time is reduced to
about 2.5 hours for a 500 step experiment, from an estimated 3.5 to 4 hours
in serial and over two weeks with the unoptimised code. Performance details
are given in Table 4.

Note that the final, full-length parallel performance is lower than the se-
rial performance reported in Table 3. The run profile, also summarised in the
table, indicates the bottleneck: the diffusion routine icsqrt remains serial
and unoptimised (the ‘$1’ in the tabulated profile indicates a parallel rou-
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Table 4: Performance and profile of a full length large grid run with four
cpus.

Real time (sec) 8788.10
User time (sec) 16494.53
System time (sec) 146.83
Vector time (sec) 8997.23
Mflops per cpu 932.45
Total Mflops 1816.10
Average vector length 255.29
Vector operation ratio (%) 98.48
Memory size (MB) 11088.00
I-Cache miss (sec) 21.72
O-Cache miss (sec) 1518.18
Bank conflict (sec) 94.08

Routine Tasks Time (%) Time (sec)
icsqrt 1 51.5 3949.70
v tautsp$1 4 11.2 861.29
interp2d tautsp$1 4 7.7 594.38
v findz$1 4 4.5 343.65

tine). This routine forms part of an incomplete Cholesky decomposition and
contains strong dependencies, making both vectorisation and parallelisation
very difficult. This is a well known characteristic of incomplete Cholesky
factorisers, and much attention has been given elsewhere to optimising them
for computation. At this time the overall performance gain is satisfactory so
improvements to icsqrt will not be attempted.



4 Large grid optimisations C1051

5 Accuracy: ELM2D-P versus ELM2D

The accuracy of elm2d-p is best assessed in comparison with the benchmark
code base of elm2d. As an aside, we note that simple porting of code from
platform to platform is often sufficient to induce differences in output for
complicated numerical codes. Therefore we may anticipate differences in the
output solutions between the 64 bit nec sx-5 executable and the 32 bit Sun
e450 executable.

A variety of small and large grid problems were used to test the accuracy
of elm2d-p; here we give results from one large grid problem for a moderately
heterogeneous hydraulic conductivity field. Figure 4 shows windowed solute
plumes calculated by elm2d-p and elm2d from the same input fluid velocity
field with an initial distribution of a thin rectangular source (with long axis
aligned vertically) at the left of the grid and mean fluid flow from left to right.
The solute plumes are rendered with a logarithmic concentration scale. The
two plumes are closely similar, with only a few subtle differences visible in
the figure.

A more quantitative analysis is given by calculating relative (percentage)
discrepancies between plume spatial moments and peak concentrations for
the two solutions. Figure 5 shows how the relative discrepancies between the
models evolve with time. The discrepancies were always less than 0.5% for
all the measures tested, which is within the bounds of differences observed
after compiling and executing the Sun elm2d code base unchanged on the
nec sx-5 (grey curve, M20 small grid). Interestingly, porting the 64 bit
elm2d-p code to a Sun platform results in output solutions that are (bitwise)
identical to the 64 bit nec sx-5 solutions. This suggests that the elm2d
base algorithm is prone to minor inaccuracies on 32 bit architectures, but
such inaccuracies in elm2d-p are reduced or eliminated on 64 bit platforms.
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Figure 4: Solute plumes calculated for a large grid problem with elm2d-p
(middle plot, 64 bit nec sx-5) and elm2d (bottom plot, 32 bit Sun e450)
after 100 time steps. The magnitude of the input fluid velocity field is also
shown (top plot).

6 Final remarks and further work

The optimisation of elm2d has been remarkably successful, with the possi-
bility of one or two extra orders of magnitude in grid size now well within
reach. The most obvious next step is the optimisation of the incomplete
Cholesky code: this code block accounts for 50% of the run time for a typ-
ical large problem. Recent parallel factorisations may be relevant here [4].
Finally, we note that extension to three spatial dimensions is a crucial and re-
quired step for the most accurate modelling of dispersive transport in porous
media.
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Figure 5: Percentage differences between elm2d and elm2d-p for a large
grid problem. Differences are calculated for plume spatial moments Mij and
the peak plume concentration Cmax.
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