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Long simulations of the Solar System:
Brouwer’s Law and chaos
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Abstract

The accuracy of long simulations of the Solar System is limited by
the accumulation of round-off error. If the round-off error is system-
atic, the error in conserved quantities grows as t where t is time, and
that in dynamical variables as t2. If the round-off error is stochastic,
the error grows as t1/2 and t3/2 respectively.
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In a previous study, we showed that it was possible to implement
the order thirteen Störmer method so the errors grew stochastically for
the two-dimensional Kepler problem. Here we show the implementa-
tion gives stochastic error growth on three-dimensional simulations of
the Solar System. Our integrations are such that the positions of the
major planets are known with an estimated error of no more than 2◦

after 109 years, a precision unmatched by earlier investigations.
Further, our numerical results suggest the outer Solar System is

not chaotic as has previously been reported, but rather computational
errors in positions grow no faster than t3/2, conforming with existing
models for stochastic error growth in an otherwise well-behaved system
of ordinary differential equations.
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1 Introduction

As the Sun and planets formed, planetesimals, small solid bodies rich in
metals, silicates and possibly ice, underwent a violent dynamical birth, of-



1 Introduction C1088

ten resulting in their amalgamation or accretion into the planets, or being
gravitationally ejected from the Solar System. Planetesimals that survived
this sorting process provide essential clues to the Solar System’s origin and
evolution.

These planetesimals reside near separatrices that distinguish them from
objects that ultimately fell into the Sun and planets, or were catapulted away.
Hence the trajectories of these planetesimals can reside on the edge of chaos
and their simulation over long intervals such as one-billion years [5, 6, 7, 4, 11,
e.g.] requires accurate integrations.

Brouwer [2] proved for a fixed step size integration of a non-chaotic system
that random round-off error for conserved quantities and dynamical variables
will grow as t1/2 and t3/2 respectively, where t is time. Brouwer’s result thus
gives lower bounds on the error growth.

In [8] we presented an implementation of the order thirteen Störmer
method ([9, p.462,e.g.] or [10, p.291]) that achieved these bounds on the
two-dimensional Kepler problem. The method uses a backward difference,
summed form implementation and a technique we call significance-ordered
computation. We tested our method on the two-dimensional Kepler problem
by performing integrations of ten million orbit for eccentricities of 0.05 (close
to Jupiter’s) and 0.50 (greater than all the planets).

Our tests showed that if the stepsize was chosen so the local truncation
error was less than machine precision, the root mean square (rms) error in
the energy and phase grew stochastically as t1/2 and t3/2 respectively.

The two-dimensional Kepler problem provides much insight about the
Solar System over short intervals of time. On long intervals, inter-planetary
forces are significant. Hence our test results from [8] are not applicable to
long simulations of the Sun and several planets and it is necessary to directly
test our method on these more realistic models.

We report on three such tests. The first test is a single 100 million year



1 Introduction C1089

simulation of the Sun and the jovian planets (Jupiter, Saturn, Uranus and
Neptune). This test demonstrates the stochastic growth of the error. The
second test is sixteen simulations of the Sun and planets Venus through to
Pluto over 322,000 years, and the third test sixteen simulations of the Sun
and jovian planets over 800 million years. These two tests measure the rms
growth of the error. The initial conditions for all integrations were taken
from the Jet Propulsion Laboratory (jpl) ephemeris.

The accuracy of simulations of the Solar System is typically measured
using the error growth in the energy and other conserved quantities [13, 14,
15, 17, e.g.]. However, resonances between planets such as the 3:2 resonance
of Pluto and Neptune are important in the long term behaviour of the Solar
System. If the phase error in a simulation is too large, these resonances will
be destroyed, leading to erroneous results such as Pluto colliding with, or
being scattered by, Neptune. Hence we use the phase error as well as the
error in the energy to measure the accuracy of numerical solutions.

2 Test 1

We proved analytically in [8] for the two-body problem with eccentricities up
to 0.5, that the local truncation error for the order thirteen Störmer method
was less than the unit round-off in ieee double precision if the stepsize was
less than one-thousandth of the period. The orbital eccentricities of the
jovian planets are all less than 0.1 and the shortest orbital period is that of
Jupiter, 4333 days. Hence, for a simulation of the Sun and jovian planets,
our analytical result in [8] strongly suggests that if the stepsize is less than
4.333 days, the local truncation error will be less than unit round-off. We
were conservative and used a stepsize of 4 days.

Figure 1 gives the relative error ee in the energy. To provide a comparison,
we added the curve for αt1/2, where α is chosen so αt1/2 interpolates the first
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data point for ee. The error ee was defined as

ee =
en(t)− en(0)

en(0)
, (1)

where en(t) is the energy at time t calculated using the numerical solution.
The error was calculated every 10,000 years, giving 10,000 data points.

If ee was dominated by truncation error or systematic round-off error, it
would grow approximately as t , and if it was dominated by random round-off
error, approximately as t1/2 . Figure 1 shows ee grows stochastically and lies
below the curve αt1/2 most of the time. We used least squares to fit the power
law γtβ to ee and obtained β = 0.37 ; this is further evidence that the error ee

is dominated by random round-off error. We repeated the calculations for
the error in the total angular momentum and obtained β = 0.44 .

Figure 2 gives the phase error for Jupiter, Saturn and Uranus, together
with the curve for αt3/2 , where α is chosen so αt3/2 interpolates the first
data point for Jupiter. The phase error for Neptune was omitted because
it did not add materially to our conclusion and its inclusion would have
crowded the figure. The phase error for the three planets was calculated
using the difference between the numerical solution and a reference solution.
The reference solution was found by an accurate integration in quadruple
precision using a new variable-stepsize pair from the family of 10–12 explicit
Runge–Kutta Nyström pairs derived by Dormand et al. [3]. The coefficients
of this pair are available from the authors.

If the phase errors were dominated by truncation error or systematic
round-off error, they would growth approximately as t2 , and if they were
dominated by random round-off error, approximately as t3/2 . Figure 2 shows
the phase errors grow slower than t3/2 and the growth, particularly for Saturn,
is stochastic.
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Figure 1: Solid line: the error in the energy. Dashed-line: αt1/2.
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Figure 2: Upper dashed line, αt3/2; solid line, phase error for Jupiter;
dashed-dotted line, phase error for Saturn; lower dashed line, phase error
for Uranus.
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3 Test 2

For our second test, we performed sixteen integrations of the Sun and the
planets Venus through to Pluto (Mercury’s mass was added to that of the
Sun). Venus’s orbital period of 225 days is the smallest of the eight planets
and we used a stepsize of 0.2 days. The initial conditions were taken from
the jpl ephemeris at random multiples of ten years.

Quadruple precision on our computer is over twenty times slower than
double precision. This meant it was impractical to find a reference in quadru-
ple precision for each of the sixteen integrations. Instead, for each integration,
we integrated for a time interval equivalent to 2i Venusian orbits, where i is
an integer from 0 to 18, and then integrated back to t = 0 . The difference
between the numerical solution at t = 0 and the initial conditions estimates
the phase error. There is no systematic cancellation of the error on the back-
wards integration in our simulations because the error grows stochastically.

The rms relative energy error for the planets is plotted in Figure 3. The
error, consistent with our results for the two-dimensional Kepler problem,
grows at a rate less than t1/2 and after 524,288 orbits of Venus (approximately
322,000 years) we have a relative energy error of 2.4×10−12. The quantitative
difference between our observed error growth and t1/2 is likely due to the
finite number of integrations we performed; our previous paper showed this
difference was to be expected.

The rms phase errors for the terrestrial and jovian planets are plotted in
Figures 4 and 5 respectively. The phase error for all eight planets including
Pluto (not shown) grew at rates less than t3/2. After 218 orbits of Venus, the
phase error for Jupiter was approximately 2.1× 10−7 radians. Extrapolated
to one billion years, this yields an error of less than one degree. Kinoshita
and Nakai [13] reported an error in Jupiter’s longitude of 0.83 degrees over
five million years; Applegate et al. [1] list their error in Jupiter’s position as
100 degrees in 100 million years.
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Figure 3: The rms relative energy error for the entire Solar System.
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Figure 4: The rms angular position error (phase error) for the terrestrial
planets.
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Figure 5: The rms angular position error (phase error) for the jovian plan-
ets.
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4 Test 3

Our last test was sixteen integrations of the Sun and jovian planets, with
the mass of the terrestrial planets added to that of the Sun and the initial
conditions chosen in a way similar to that for Test 2. We integrated the
trajectories of the jovian planets for a time interval equivalent to 2i Jupiter
orbits, where i is an integer between 0 and 25 . At the end of each integra-
tion, we used the positions and velocities of the Sun and planets as initial
conditions to integrate backwards in time to t = 0 . The phase errors were
then calculated as in Test 2.

Figure 6 shows the rms energy error for the entire system. We observe the
relative energy error grows as t0.48, very nearly t1/2, indicating the absence
of systematic error growth. Given that we are using a finite number of
integrations, our results agree very well with theory.

Figure 7 shows the rms phase errors for all jovian planets. The errors
grow at rates less than t3/2 and after 226 Jupiter orbits (225 orbits forward
and 225 orbits backwards, nearly 800 million years), the error for all planets
is less than 1.9× 10−2 radians. Extrapolated, the phase error after 109 years
is less than 2◦ for all planets, in good agreement with the extrapolated value
of Test 2.

5 Discussion

We performed long simulations of the Sun and planets using an order thirteen
Störmer method that had been implemented to minimise round-off error. The
stepsize for each simulation was approximately one-thousand of the smallest
orbital period. We found the error in the energy and phase grew approx-
imately as t1/2 and t3/2 respectively. We thus achieved the lower bounds
of Brouwer [2] and confirmed our earlier results [8] for the two-dimensional
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Figure 6: The rms relative energy error for the outer Solar System.
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Figure 7: The rms angular position error (phase error) for the outer Solar
System.
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Kepler problem.

The aim of the present work and that in [8] was to implement high order
Störmer methods in a way that simulations of the planets and planetesimals
were as accurate as possible for the computer being used. We showed this
was possible if the stepsize was chosen so the local truncation error of the
Störmer method was less the machine precision. This necessitates a small
stepsize but, as the work in [6] and [7] shows, the stepsize is large enough
that simulations of a large number of planetesimals over long intervals are
possible on modern workstations.

As well as demonstrating Brouwer’s Law is achievable for realistic simula-
tions, our results for our second and third tests point to another implication.
Previous studies such as in [16] reported the outer Solar System is chaotic.
Chaotic systems are characterized by an exponential divergence of nearby
trajectories, and have both stable and unstable manifolds. In particular,
suppose we select different initial conditions and compute the orbit for some
length of time, then reverse the direction of the integration in order to iden-
tify how close we are upon return to the initial conditions. During the course
of the computation, we expect that accumulated integration error will cause
the computed solution to depart from the exact solution associated with the
initial condition. This means the integrated solution represents a nearby tra-
jectory to the true solution. If a set of initial conditions is representative of
a chaotic system — that is, an unstable manifold is present — nearby orbits
would show exponential divergence from the exact solutions for integrations
both forward and backward, and would return to the starting point with an
error that has grown exponentially in time. The rate that error grows in
time would be characterized by the same Lyapunov time that characterizes
the chaotic character of the system. If the system is not chaotic — that is,
no unstable manifold exists — the divergence of the final computed solution
from the initial conditions after the return integration will not depend upon
the elapsed time exponentially, but will vary as a power-law in elapsed time
(see also [17]). If an unstable manifold was present, only a set of measure
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zero of initial conditions (in the presence of computational error) would not
show exponential divergence. None of our randomly selected initial condi-
tions showed chaotic behaviour.

In addition, the errors in the energy and angular momentum for the
quadruple precision reference solution of Test 1 both grew as t1.09, good
agreement with the expected linear growth for a non-chaotic system. We
checked the reference solution further by calculating a more accurate refer-
ence solution and using this to estimate the global error in the less accurate
reference solution. The L2 norm of the global error for the five bodies grew
as the power law t2.07, good agreement with the expected quadratic growth
for a non-chaotic system.

Our conclusion about the stability of the outer Solar System agrees with
that of Ito and Tanikawa [12]. They performed two simulations of the Jovian
planets and Pluto that spanned 5 × 1010 years, approximately 10 times the
age of the Solar System. One simulation was forward in time, the other
backwards in time. The initial conditions for their simulations were taken
from the same jpl ephemeris we used. Ito and Tanikawa concluded the outer
planetary system was stable for 5× 1010 years.
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