
ANZIAM J. 46 (E) pp.C1205–C1221, 2005 C1205

Additive models in high dimensions
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Abstract

Additive decompositions are established tools in nonparametric
statistics and effectively address the curse of dimensionality. For the
analysis of the approximation properties of additive decompositions,
we introduce a novel framework which includes the number of variables
as an ingredient in the definition of the smoothness of the underlying
functions. This approach is motivated by the effect of concentration
of measure in high dimensional spaces. Using the resulting smooth-
ness conditions, convergence of the additive decompositions is estab-
lished. Several examples confirm the error rates predicted by our error
bounds. Explicit expressions for optimal additive decompositions (in
an L2 sense) are given which can be seen as a generalisation of mul-
tivariate Taylor polynomials where the monomials are replaced by
higher order interactions. The results can be applied to the numerical
approximation of functions with hundreds of variables.
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1 Introduction

Additive approximations of real functions f defined on a domain Ω ⊂ Rn

have the form

fadd(x) = f0 + f1(x1) + f2(x2) + · · ·+ fn(xn) + (1)

f1,2(x1, x2) + · · ·+ fi1,i2(xi1 , xi2) + · · · fn−1,n(xn−1, xn) + · · ·+
fi1,i2,...,im(xi1 , xi2 , . . . , xim) + · · ·+ fn−m+1,...,n(xn−m+1, . . . , xn) .

The terms of this decomposition, called interactions, are functions of at most
m variables and the effectiveness of the approximation in dealing with the
curse of dimensionality [1] is due to the choice m� n . We assume that Ω is
endowed with a natural probability measure and we consider the approxima-
tion which is L2 optimal with respect to the product measure defined by the
marginal measures. This approximation is optimal for product measures (or
independent random variables) and order optimality is shown for a slightly
larger class of measures.

Additive approximations are widely used in statistics [2, 5, 13, 3], data
mining [6] and in the theory of numerical quadrature [9, 7]. They are often
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referred to as anova decompositions as they generalise for real variables
the methods which are used in the analysis of variance (anova). It has
been observed that often a choice of m = 2, . . . , 5 appears to give reasonable
approximations in practice. As the amount of data required to estimate
interactions grows exponentially in m, this observation may reflect the fact
that most currently available data sets are simply not large enough to identify
higher order interactions and, consequently, only functions which are well
approximated can be fitted from data. Here we show that smooth functions
are indeed well approximated by anova decompositions, and, consequently,
can be fitted with the limited amount of data available.

In one of its forms, the phenomenon of concentration of measure [4, 8, 12]
says that every Lipschitz function on a sufficiently high-dimensional domain
is well-approximated by a constant function, that is, an additive function
of the lowest possible order of interaction m = 0 . However, as one would
expect, a reasonably good approximation requires the intrinsic dimension of
a dataset to be prohibitively high. For general functions one cannot expect
an additive approximation to be better than the constant as will be seen
later. Better approximations are obtained when a smoothness condition is
invoked which holds uniformly over the dimension n. Our suggestion is to
consider smooth functions and generalise the standard Lipschitz condition by
requiring the L2-norm of the vector of all mixed derivatives of order k ≤ m
to be bounded above by a constant Lm, independent of the dimension of
the domain Ω. In this case the method developed here is effective and the
derived error rates are confirmed for a couple of examples.

In Section 2 we review the relevant concentration properties and introduce
our smoothness assumptions. Section 3 provides the main approximations
and error bounds and in Section 4 we discuss a couple of examples.
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2 Concentration and continuity

The simplest class of additive functions is that of zeroth order of interaction,
m = 0 , in which case the approximating functions fadd are simply constants.
It turns out that even the approximation by constants admits a substan-
tial theory if the domain is high-dimensional. Such approximation improves
as dimension grows, which observation is at the core of the phenomenon of
concentration of measure on high-dimensional structures. The range of vari-
ous manifestations of this phenomenon in mathematical sciences is extremely
wide and includes results as diverse as the law of large numbers, blowing-
up lemma in information theory, Dvoretzky’s theorem on almost spherical
sections of convex bodies, foundations of statistical physics, and so forth.
(See [4, 8, 12, 10] and numerous references therein.)

The concentration phenomenon refers to the observation that for many
‘natural’ families of spaces, indexed by their dimension n, and endowed with
a metric and a probability measure, the probability that a Lipschitz func-
tion f(x) (defined on these spaces) differs from its expected value by less
than ε > 0 is at least

1− C1 exp(−C2ε
2n) , (2)

where C1, C2 > 0 are constants only depending on the family of spaces in
question and the Lipschitz constant. Intuitively, it means that a ‘nice’ func-
tion on a space of high dimension ‘concentrates’ near one value. Such esti-
mates with varying constants hold for the hypercubes (remember that the
distance has to be appropriately normalised), the Euclidean spaces with the
Gaussian measure, the Hamming cubes, the groups of unitary matrices.

A careful examination reveals that the cases where Lipschitz continuous
functions are approximated well by constants occur for extremely high n way
beyond n ≈ 100 , the case we are interested in. The next natural question is
therefore: will the approximation error bounds improve automatically if one
allows the approximation by additive functions of higher interaction order
than zero?
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It seems quite natural that by significantly relaxing the restrictions on
the class of approximating functions one gets better approximation bounds.
Rather surprisingly, it is not the case, as there exist functions on n-dimensional
domains for which approximation by constants is the best possible among all
additive functions with interaction orders k of up to n−1 . A simple example
of such a function is f(x) = x1x2 · · ·xn on the domain [−1, 1]n with a uniform
distribution.

In view of this, it seems unavoidable that one should impose additional re-
strictions on the functions f to obtain better bounds on higher-order approx-
imations with additive functions. We will now put forward such restrictions
as we find most natural.

In practical applications, the variables xi denote features of an underlying
object which may be a company, a biological cell or a river catchment. By
increasing the number n of features one attempts to better characterise the
objects. However, an increased number of features will typically lead to an
increase of the (Euclidean) distance between the feature vectors. In order for
the distance to sensibly model a distance between two objects one needs to
scale the Euclidean distance as

d(x,y) :=

√√√√ 1

n

n∑
i=1

(xi − yi)2 ,

such that it no longer (on average) depends on the dimension for the case
of independent uniformly distributed features xi ∈ [0, 1] . We will consider
functions f which satisfy a Lipschitz condition |f(x) − f(y)| ≤ Ld(x,y)
with respect to this normalised norm. A simple example of such a function
(where L = 1) is f(x) =

∑n
i=1 xi/n . For differentiable functions the Lipschitz

condition with the scaled norm is equivalent to

n∑
i=1

(
∂f

∂xi

)2

≤ L2

n
. (3)
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Considering mth order differences and observing that they should be of or-
der O(hm) where d(x,y) ≤ h for any two points x and y occurring in the
difference one gets the smoothness condition:

∑
1≤ii<···<im≤n

(
∂mf(x)

∂xi1 · · · ∂xim

)2

≤ L2
m

nm
.

That this is indeed a smoothness condition which holds for practically impor-
tant functions is supported by the examples f(x) = exp (−

∑n
i=1 x

2
i /n) and

f(x) =
∑n

i,j=1 qijφ(xi, xj) with
∑n

i,j=1 |qij| = 1 (for example, the energy of
n interacting particles with a fixed total mass or charge). These conditions
given here assume that all the features are equally important or informa-
tive. An alternative smoothness assumption, where features are assigned
weights of importance is given in [11]. Here we mainly consider the example
of Ω = [0, 1]n but in a similar fashion, one can treat other important cases,
such as the sphere and the normal distribution. In the first case no normalisa-
tion is required and the bounds on the derivatives are thus slightly different;
however, the approximation results are basically the same and reflect the
concentration property of high dimensional domains.

3 Additive approximation

Consider first the case of a probability distribution p(x) =
∏n

i=1 pi(xi) and
denote by E the expectation and by E(f | xi1 , . . . , xik) the usual conditional
expectations. Using the operators Di defined by

(Dif)(x) = f(x)− E(f | x1, . . . , xi−1, xi+1, . . . , xn) ,

one obtains the “telescoping sum” using the independence assumption:

f(x) = E(f) +
n∑

i=1

DiE(f | x1, . . . , xi) . (4)
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Iterating this expansion for each term one gets the following decomposition.

Theorem 1 For f ∈ L2 and 1 ≤ m ≤ n one has

f(x) = E(f) +
n∑

i=1

DiE(f | xi) +
∑

1≤i2<i1≤n

Di2Di1E(f | xi2 , xi1) + · · ·

+
∑

1≤im−1<···<i1≤n

Dim−1 · · ·Di1E(f | xim−1 , . . . , xi1)

+
∑

1≤im<···<i1≤n

Dim · · ·Di1E(f | x1, x2, . . . , xim , xim−1 , xim−2 , . . . , xi1) .

Proof: One uses induction over m. The case m = 1 is just equation (4).
One obtains the decomposition for the case of m = k from the case m = k−1
by expanding the last term using the telescoping expansion again. ♠

A similar decomposition for the special case of m = n has been proved
in [2] where the theorem is called Decomposition Lemma.

Next we introduce the space of L2 functions which are sums of functions
each depending on k variables only, as:

L2,k :=

{
g(x) =

∑
i1,...,ik

gi1,...,ik(xi1 , . . . , xik) ∈ L2

}
.

(Note that L2,k is closed, which follows from Theorem 2 below.) Introduce
the operator Pm : L2 → L2,m such that

(Pmf)(x) = E(f) +
n∑

i=1

DiE(f | xi) +
∑

1≤i2<i1≤n

Di2Di1E(f | xi2 , xi1) + · · ·

+
∑

1≤im<···<i1≤n

Dim · · ·Di1E(f | xim , . . . , xi1)
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and the (remainder) operator Rm : L2 → L2 with

(Rmf)(x) =
∑

1≤im<···<i1≤n

Dim · · ·Di1E(f | x1, . . . , xim , . . . , xi1) .

From Theorem 1 one then gets f = Pmf + Rm+1f and one shows that this
is an orthogonal decomposition:

Theorem 2 The operator Pm is an orthogonal projection, and

E((f − Pmf)2) ≤ E((f − g)2) , for all g ∈ L2,m and f ∈ L2 .

Proof: Using the definition of Di and the independence assumption one
can see that Pmf can be recast as a linear combination of terms of the form
E(f | xj1 , . . . , xjt) for appropriately chosen xj1 , . . . , xjt . As for every square
integrable g one has∫

E(f | xj1 , . . . , xjt)g(x)p(x) dx

=

∫
E(f | xj1 , . . . , xjt)E(g | xj1 , . . . , xjt)p(x) dx ,

it follows that all operators producing the terms of the decomposition are
self-adjoint and so Pm and Rm+1 are self-adjoint as well.

Now consider any f ∈ L2,m . As f only depends on m variables, one has
Di1 · · ·Dim+1f = 0 and so Rm+1L2,m = 0 . From this it follows that P 2

m = Pm

and, as Pm is self-adjoint, it is an orthogonal projection onto L2,m. ♠

In the sequel we will use the (marginal) cumulative distribution functions
Pi(xi) =

∫ x

−∞ pi(s) ds . Furthermore, let

Gi(t1, t2) := min
a,b=1,2

(Pi(ta)(1− Pi(tb))
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and γ :=

∫
max

i
Gi(t, s) dt ds .

Integration by parts and the Cauchy–Schwarz inequality yield

n∑
i=1

E((Dif(x))2) ≤ γL2

where L is the Lipschitz constant. For the error we will use the seminorm

|f |2m := sup
x

∑
1≤i1<···<im≤n

(
∂mf(x)

∂xi1 · · · ∂xim

)2

.

The approximation result for the optimal additive approximants is then

Theorem 3 For any f with bounded seminorm |f |m the mean squared error
of Pmf is bounded by

E((Rmf)2) ≤ γm|f |2m . (5)

Proof: One requires the kernel ki(xi, ti) = Pi(ti)−H(ti−xi) where H(x) is
the Heaviside function, that is, H(x) = 1 for x ≥ 0 and H(x) = 0 for x < 0 .
Using integration by parts one gets for differentiable f :

Dif(x) =

∫ ∞

−∞
ki(xi, ti)

∂f

∂ti
(x1, . . . , xi−1, ti, xi+1, . . . , xn) dti . (6)

Use gi1,...,im(ti1 , . . . , tim) := ∂mE(f | x1, . . . , xim−1, tim , . . . , ti1)/∂ti1 · · · ∂tim
and the fact that all the terms in the decomposition of Rmf are orthogonal
to get

E((Rmf)2) =
∑

i1<···<im

∫
gi1,...,im(ti1 , . . . , tim)gi1,...,im(si1 , . . . , sim)

×
m∏

j=1

Gij(sij , tij) ds dt .
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With

γm :=

∫
max

i1<···<im

m∏
j=1

Gij(sij , tij) ds dt

one gets E((Rmf)2) ≤ |f |2m γm and the bound follows from γm ≤ γm . ♠

If, as we suggested in the previous section, one has |f |m ≤ Lm/n
m/2 , one

gets the error bound

E((Rmf)2) ≤ γmL2
m

nm
.

In particular, for the uniform distribution on [−1, 1]n one has γ = 1/3 and
so E((Rmf)2) ≤ L2

m/(3
mnm) . In the case of the standard distribution one

gets γ ≈ 0.516 and so E((Rmf)2) ≤ 0.516mL2
m/n

m.

So far, the given results concerned product measures only. Consider
now an arbitrary probability distribution function p(x) and let pi(x) be the
marginal distributions of p(x). Now let P⊗m denote the additive approxima-
tion Pm with respect to the measure defined by the product of the marginal
distributions and let R⊗m+1 be the corresponding error. In general, this ap-
proximation is not going to be close to optimal, in fact, one cannot expect
to get a reasonable approximation in this way. (Consider, for example, the
case where two variables are identical.)

The situation improves when the original measure and the product of
the marginal measures are absolutely continuous with respect to each other,
that is, when the measures have the same null sets. In this case the Radon–
Nikodym theorem implies that there is a measurable function (the Radon–
Nikodym derivative) ψ(x) such that p(x) = ψ(x)

∏
pi(xi) . If E⊗ is the

expectation with respect to the product measure one has for any positive
random variable Y the bound E(Y ) = E⊗(Y/ψ) ≤ E⊗(Y )/ essinfx ψ(x) .
Now one combines this with the approximation theorem for Pm to get a
mean squared error bound for the approximation P⊗m .

Theorem 4 Let ψ be the Radon–Nikodym derivative of a distribution p(x)
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with respect to the distribution defined by the product of its marginals. Then
the error of the optimal approximation with respect to the marginals

E((R⊗mf)2) ≤ γm|f |2m/ essinfx ψ(x) . (7)

By similar reasoning one can see that in this case the approximation rate
of P⊗m is the best possible for additive approximations as:

Theorem 5

min
g∈L2,m

E((f − g)2) ≤ E((R⊗mf)2) ≤ κ min
g∈L2,m

E((f − g)2) (8)

where κ = supx ψ(x)/ essinfx ψ(x) .

A corollary of these two theorems is that the best additive approximation of
order m does have the same approximation rate O(|f |m) as the approxima-
tion with respect to the corresponding product measure if the two measures
are equivalent.

4 Examples and summary

A first example is f(x) = exp(−‖x‖2/n) and a uniform distribution in [−1, 1].
In this case the sum of the squaredmth derivatives is bounded by 4m/(nmm!).
The error bound from the previous section thus provides an expected squared
error of E(Rmf

2) ≤ 4m/(3mm!nm) . The additive approximation can be
determined explicitly using the formulas from the previous section and the
error was estimated using a sample 1000 uniformly distributed points. The
result is displayed in Figure 1) and while the actual bound is a bit pessimistic,
the measured errors do display the predicted n−m/2 behaviour as a function
of n.
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Figure 1: nm/2 times rms (root mean squared) errors for a constant, first
and second order approximation for the function f(x) = exp(−‖x‖2/n) .
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Figure 2: nm/2 times rms (root mean squared) errors for a constant, first
and second order approximation for the function f(x) = (1 + sin(x1))(1 +
sin(x2))(1 + sin(x3)) .
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A different case was considered in Figure 2). Here the chosen function
was f(x) = (1+ sin(x1))(1+ sin(x2))(1+ sin(x3)) and the data was normally
distributed, so that the sum of the variances was independent of the dimen-
sion. One then gets the same error behaviour as for the first example which
is confirmed by experiment.

Finally, we consider the mars approximation using the algorithm pro-
posed in [3] and 1000 random data points producing the errors displayed
in Figure 3). The code allows the choice of the maximal order m of the
interactions and one can see how by choosing higher m one gets better ap-
proximation. We conjecture that the drop in precision (especially for m = 4)
relates to the fact that not enough data was available to provide a good
estimate for the interaction terms.

In summary, a constructive approximation formula for best L2 approxi-
mations is provided for product measures. It was shown that these approx-
imation have error rates bounded by O(|f |m) and the rates were confirmed
in some experiments. These approximations converge with dimension for an
appropriate scaling of the derivatives with dimension which is motivated by
the scaling of the norm. In the case of general measures the method can
be used to compute approximations with respect to the induced product
measure defined by the product of the marginal measures. One gets order
optimal approximations (in terms of the dimension) when the induced and
the original measures are absolutely continuous with respect to each other.
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Figure 3: rms errors for the mars fit.
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