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Effective simulation methods for
polyelectrolytes in low dielectric solvents
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Abstract

Simulations of polyelectrolytes in low dielectric solvents converge
slowly. This can be circumvented by using clothed global moves or par-
allel expanded techniques. In clothed moves the counterions are moved
with the polyelectrolyte backbone and are not left behind when a sub-
stantial part of the chain is moved. For moderately charged systems
the speed-up has been shown to be by a factor of up to 3. We show
how, for systems with strong electrostatic interactions, much larger
efficiency gains in the simulation process, by a factor of over 400, can
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be obtained. In our parallel expanded algorithm, a number of conven-
tional Monte–Carlo simulations are carried out in parallel, with only
the dielectric constant being different. By allowing the different simu-
lations to communicate and exchange conformations, trapped config-
urations in the low dielectric simulations may escape via the higher
dielectric simulations. We show how this method scales linearly up to
8 processors for highly charged polyelectrolytes.

Contents

1 Introduction C1255

2 The model and simple Monte–Carlo method C1257

3 Clothed global moves C1259

4 Parallel expanded ensembles C1264

5 Conclusion C1269

References C1270

1 Introduction

The conformational behaviour of polyelectrolytes (charged polymers) have
been the focus of many theoretical studies, see for example the review by Ull-
ner [14]. In contrast to predictions of conventional mean field theories, com-
puter simulation studies have shown that the effective interaction between
like-charged monomers can be attractive when the electrostatic interactions
are strong [13, 15, 10]. Here we consider polyelectrolytes immersed in low di-
electric solvents such as alcohol. By mixing water and ethanol the dielectric
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constant ε can be varied from 78 for pure water to 24 for pure ethanol, that
is, the electrostatic interactions are three times larger in ethanol compared
to water. A major problem for simulations of polyelectrolytes with strong
electrostatic interactions is that calculations of the conformational proper-
ties of the macromolecules tend to converge very slowly. When equilibrium
properties are of interest, Monte–Carlo (mc) simulations explore the free en-
ergy landscape by employing unphysical moves, that is, moves that do not
follow the actual dynamics of the system. Unfortunately, while such methods
are effective for neutral polymers and polyelectrolytes that interact with the
the screened coulomb potential, they do not provide the same efficiency for
systems with strong electrostatic interactions when explicit counterions are
used. Also, due to the long range character of the Coulomb interaction all
pair-wise interactions have to be calculated and this provides a limit on the
number of charged particles that can be considered in a simulation. The long
range interaction also prohibits the use of standard parallel computational
techniques such as domain decomposition. Here we compare in detail the
performance of two different approaches to speed up mc simulations of poly-
electrolytes in low dielectric solvents, namely clothed global moves (Section 3)
and parallel expanded ensembles (Section 4).

The use of clothed global moves for polyelectrolytes was first suggested by
Gordon and Valleau [4] for the pivot move of a polyelectrolyte with explicit
counterions. Gordon and Valleau used the primitive model to study a poly-
electrolyte with monovalent counterions in aqueous solutions. For systems
with strong electrostatic interactions considered here, much larger efficiency
gains are found. Section 3 present results showing how the clothed pivot
increases the speed-up from about two for ε = 78 to 400 for ε = 24 .

An alternate approach to the study of strongly interacting systems is
to use expanded ensembles techniques [11]. The idea is to create an extra
simulation dimension (here the dielectric constant) which provides a route
to circumvent high barriers in the free energy landscape, without having to
climb over them directly. By running simulations at different values of ε on
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different computing nodes an effective parallel algorithm is constructed [5].
The simulations conducted at higher ε will converge fast while those at lower ε
may become trapped in local minima in the free energy landscape. However,
by allowing the different simulations to communicate and exchange conforma-
tions, those configurations trapped in low ε runs may escape via the higher ε
runs. Also, if variations along the extra dimension are of interest, additional
results may be accumulated at no extra effort. The results of Section 4 show
how an expanded ensemble algorithm scales efficiently on parallel hardware
at least to 8 processors.

2 The model and simple Monte–Carlo

method

The basic system consists of a single polyelectrolyte with a total number of
monomers N . The polyelectrolyte is modelled as a chain of identical hard
sphere monomers each carrying a charge qm. Each monomer is connected to
its neighbour by a rigid but freely rotating bond of fixed length b. The poly-
mer is enclosed in a spherical cell, with radius Rc, and the middle monomer
is fixed at the centre of the cell. Also in the cell are hard sphere counterions;
Nc is the number of neutralising counterions each with charge qc. In the cell
model, only interactions within the cell are accounted for and no particles
are allowed to escape the cell. All simulations are carried out in the so-called
Primitive Model whereby the solvent is described by the dielectric constant ε.

The Hamiltonian for the system is the sum

U = Uel + Uhc + Ucell , (1)

where the electrostatic term

Uel =
N+Nc∑

i<j

qiqje
2

4πεε0 |ri − rj|
, (2)
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and e is the elementary charge, ri is the coordinate and qi is the valence of
particle i, Uhc is a hard core potential preventing the particles from getting
closer than a distance d (the hard sphere diameter) from each other, and
Ucell is the term that confines all ions and monomers to reside within the
spherical cell of radius Rc. In our simulations the following parameters are
used: d = 4 Å and b = 6 Å. The monomers have a charge of qm = +1
and the counterions have a charge qc = −1 , −2, −3 or −4 and obeys the
electroneutrality condition, Nqm + Ncqc = 0 .

Simulations are carried out in the canonical ensemble and new monomer
configurations are generated by pivot moves [12] and the small ions are trans-
lated. A pivot move involves choosing a monomer, between 2 and N , and
a rotation angle, between 0 and δrot. In all simulations δrot = 360◦ . The
chosen monomer divides the polymer in two and the smaller part of the
polyelectrolyte is rotated. This ensures that the middle monomer is kept
fixed. Energies are computed from Equation 1 and moves are accepted ac-
cording to the Metropolis mc scheme [1] with the acceptance probability
p = min [1, exp(−β∆U)] where ∆U = U(new) − U(old) and β = 1/kBT ,
with kB being the Boltzmann constant. U(new) and U(old) are the energies
for the new and old configuration. The autocorrelation for the end-to-end
distance is calculated as

cRee(t) = 〈Ree(0)Ree(t)〉 =
1

tmax

tmax∑
t0=1

Ree(t0)Ree(t0 + t) . (3)

Here the time is discretised and the averaging is performed over tmax time
origins. We also define the integrated autocorrelation time

τ =

∫ ∞

0

cRee(t) dt . (4)

τ is used as a measure of how fast a certain property of the simulation con-
verges. In practise the integration is not drawn to infinity but to a point
where the integrated autocorrelation does not increase any more. The inte-
grated autocorrelation time τ gives a measure of how long a simulation has
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to be run before statistically independent values of a certain property can
be found. Thus, shorter autocorrelation times will allow us to collect good
statistics faster and the simulation converges in shorter time. Further details
of the simulation model and method can be found in previously reported
studies dealing primarily with dna condensation [10, 9].

3 Clothed global moves

The pivot move is far superior to simple translations of individual monomers.
For neutral polymers and polyelectrolytes with screened coulomb interac-
tions, chains with many thousand monomers are run on relatively modest
hardware [12, 8]. When explicit ions are introduced, which is necessary for
studying strong electrostatic interactions, two problems arise:, pivot trial
moves can be rejected due to hard core interactions with the small ions; and
pivot trial moves can be rejected due to a large energy difference when a
large part of the chain is moved out of its small ion atmosphere.

In the presence of many small particles, for instance when salt is added,
the first problem becomes the limiting factor while the second is dominant for
the case of large electrostatic interactions. In both cases, the moves involving
a big part of the chain are those most likely to be rejected.

The idea behind the clothed pivot move is to include part or all of the
small ions surrounding the polyelectrolyte in the global move. By doing so
the energy changes involved in the move will be smaller and the acceptance
rate will be higher and this allows pivoting through larger angles.

The clothed pivot moves are performed as described in Section 2, ex-
cept that ions within a distance h from monomers involved in the pivot are
moved with the chain with a probability pc. To ensure detailed balance, the
acceptance probability must be changed to [4]

p = min
[
1, (1 − pc)

∆m exp(−β∆U)
]

, (5)
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where ∆m is the difference, before and after the clothed move, in the number
of ions within the distance h from monomers involved in the pivot move. The
two parameters h and pc are input to the simulations and affect the efficiency
of the simulation in the same way as the choice of pivot angle parameter δrot

or small ion translation distance parameter δtr. From our experience and oth-
ers [4], the choice of h is not sensitive except that h should include the ions
closely correlated to the chain. Here we make the empirical choice: h = 3d .
The choice of pc depends on the strength of the electrostatic interactions.
For the case of monovalent counterions in water (ε = 78) Gordon and Val-
leau [4] found pc = 0.75 to be optimal, whereas for trivalent counterions or
low dielectric constant (ε < 20) pc = 1 appears to be the best choice. In be-
tween the clothed global moves, it is also important to relax the counterion
configurations by moving them individually. In line with earlier work [10] we
choose to perform attempted moves on half of the ions between every global
move.

A common measure of conformational properties for polymers is the end-
to-end distance Ree. In order to illustrate how Ree converges, the autocorre-
lation of Ree is shown in Figure 1. For the water case of ε = 78 there is no
difference between the clothed and the simple algorithm for the short N = 32
chain for which the end-to-end distance decorrelates in only 2 mc iterations.
For lower dielectric constants of ε = 39 and ε = 24 there is a very significant
speed-up in runs carried out with the clothed pivot algorithm. These results
are quantified in Table 1 where speed-up factors of over 400 are attained for
ε = 24 .

Another way of increasing the electrostatic interaction is to include multi-
valent counterions in the system. Polyelectrolytes together with multivalent
counterions have attracted significant interest; for example, it is well known
that multivalent polyamines are responsible for dna condensation [2]. Fig-
ure 2 shows the autocorrelation times for polyelectrolytes with counterions
of different charges. As expected, longer chains (N = 292) converge slower
than shorter chains (N = 24). The convergence is also slower with increasing
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Figure 1: The autocorrelation of Ree for a polyelectrolyte with N = 32 and
monovalent counterions at different dielectric constants, ε = 24 (solid black
line), ε = 39 (dashed red line), and ε = 78 (dot-dashed green line). The
thin lines are from simulations performed with the clothed pivot algorithm
and the thick lines are from simulations with the simple pivot. The inset
shows the autocorrelation curves obtained with the simple pivot for a larger
number of mc iterations. In the main figure the two dot-dashed lines are on
top of each other.
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Table 1: Integrated autocorrelation times for the original Monte–Carlo
algorithm τmc, for the clothed pivot algorithm τcp and for the parallel Pε
method τPε with nprocs = 8 (ε = 24 to 78). A is the percentage of accepted
swaps between a certain ε-ensemble and its nearest neighbours. Note that
no speed-up is found for high ε since the resolution was not sufficient to
distinguish between them as they decorrelate in only 2 mc iterations.

ε τmc (s) τcp (s) τmc/τcp τPε (s) τmc/τPε A (%)
24 160 0.36 440 20 8.1 7.7
28 45 0.34 132 8.6 5.2 7.8
33 17 0.30 57 4.1 4.1 7.8
39 4.0 0.26 15 1.8 2.2 8.1
47 0.86 0.24 3.6 0.70 1.2 8.9
55 0.35 0.22 1.6 0.28 1.3 11
65 0.24 0.20 1.2 0.25 1.0 14
78 0.14 0.15 1.0 0.14 1.0 16

valance of the counterions. However, the improvement in the rate of conver-
gence at high counterion valencies due to the use of clothed pivot moves is
very significant. The multivalent counterions will be in close proximity to
the monomers due to the strong electrostatics. Therefore, when a global
pivot move is attempted without taking these multivalent ions along, it will
likely result in large changes in the configurational energy. Thus such un-
clothed pivot moves will likely be rejected, which in turn leads to the slow
convergence of conformational properties.

In Figure 2, the time is shown as real time in seconds as run on a 1400MHz
amd Athlon Linux workstation. To show the time in terms of mc iterations
would be misleading when discussing the clothed algorithm, since the de-
creased number of mc steps needed for convergence is counterbalanced by
the increased number of pair interactions calculated in every move, since
more particles are involved in the clothed pivot move. The increase in com-
putational time for every move in the clothed pivot scales as N2

c . Thus the
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Figure 2: Autocorrelation for the end-to-end distance of polyelectrolytes
with counterions of different valency: qc = 1 (solid black line), qc = 2 (dashed
red line), qc = 3 (dot-dashed green line) and qc = 4 (long dashed blue line).
The thick lines represent simulations performed with the simple pivot move
while the thin lines come from simulations utilising the clothed pivot move.
(a) N = 24 , note that the thin long dashed line is just on top of the thick
solid line. (b) N = 292 .
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case with monovalent counterions will need 9 times longer for every move in
comparison to the case with trivalent counterions, which is one reason why
the algorithm only showed a 1.2 to 3 times efficiency improvement in the
original work by Gordon and Valleau [4].

The proportion of accepted pivots as a function of the monomer at which
the pivot is performed is plotted in Figure 3. For the simple pivot move
see that pivot moves about those monomers that are located towards the
middle of the chain are only accepted very infrequently. For the case with
qc = 3 this difference is even more accentuated. Applying the clothed pivot
move increases the percentage of accepted moves that involve the middle
monomers. Accepted moves that involve larger portions of the chain lead to
faster convergence of configurational properties. It is interesting to see that,
when the clothed pivot is used, the case with qc = 3 has a flatter acceptance
curve than for the case with qc = 1 and that the moves involving many
monomers (> 30) are actually more often accepted for the trivalent case in
comparison with the monovalent case. This flat curve resembles that of an
uncharged polymer which suggests that the relative acceptance percentage
of clothed pivot moves of a polyelectrolyte with tightly bound counterions is
similar to that of simple pivot moves for a neutral polymer.

4 Parallel expanded ensembles

In this section we examine the application of the parallel ensemble method [5]
to simulations of polyelectrolytes in low dielectric solvents. For the present
problem it is natural to consider the expanded ensemble with ε as the param-
eter. Our implementation is a modification of the algorithm used in parallel
tempering (pt) simulations of polymers by Irbäck and Sandelin [7] and we
refer to it as Pε.

The Pε algorithm consists of running multiple replicas of the system si-
multaneously at different ε, where each replica is updated independently
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Figure 3: The acceptance rate of the pivot move as a function of monomer
number. The polyelectrolyte has N = 96 and monomer number 48 is fixed
in the middle of the cell. The different curves correspond to systems with
monovalent counterions (solid black lines), trivalent counterions (dashed red
lines) and an uncharged polymer (dotted green line). Thick lines are from
simulations with the simple pivot move and thin lines are from simulations
with the clothed pivot.
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using the Metropolis Monte–Carlo technique described in Section 2. The
implementation adopted here compares a pair of replicas, with neighbour-
ing ε, every 10 pivot moves to determine whether to exchange the polymer
coordinates between the replicas. This was determined to give the best per-
formance according to trial and error testing. This technique is suitable for
parallelisation because communication between replicas does not occur often
and the amount of information to be shared is small. Thus communication
between systems takes very little time in comparison to other parts of the mc
algorithm. Coordinate exchanges are accepted according to the Metropolis
criterion [3] with probability

p = min {1, exp [−∆ (βU)]} , (6)

where ∆(βU) = ∆β × ∆U and the ∆ refers to a comparison between two
different replicas. Equation 6 is general for parallel expanded ensembles.
Comparing two replicas (a and b) in the Pε ensemble gives

p = min

{
1, exp

[
−β

(
1

εa

− 1

εb

)
(Ua − Ub)

]}
. (7)

The distribution of different ε over the total number of replicas n is an
input to the algorithm and affects the acceptance rate of exchanges and thus
the efficiency of the method. A useful acceptance rate is a figure which
should be high enough such that the algorithm is not effectively running n
completely independent mc simulations and yet still low enough such that
all n simulations do not evolve as a single mc simulation, using the same
coordinates across n replicas. Also, the distribution of different ε should be
made such that the acceptance rates is the same over the different neigh-
bouring pairs. This involves having larger gaps for large ε. Following recipes
given in the literature for the pt algorithm [6], we choose the distribution
of ε in an exponential fashion according to

εk = εmin

(
εmax

εmin

)k/(n−1)

, (8)
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where k refers to the replica number. Normally εmin will be determined
by the physical problem. As a empirical rule of thumb an acceptance rate
of between 10% and 20% for the exchanges between replicas appears to be
optimal and n and εmax should be chosen to satisfy this condition and any
hardware constraints such as the available number of nodes.

To illustrate the efficiency of this method, a polyelectrolyte of length N =
32 is selected and only monovalent counterions are present in the cell. Taking
into consideration our computational limitations (typically 8 processors were
available) and the need to achieve a useful acceptance rate of coordinate
exchanges between replicas, we chose εmin = 24 and εmax = 78 .

The end-to-end autocorrelation function is shown in Figure 4a for a few
different values of ε. For cases with high ε, there is little difference between
Pε simulations compared to the serial algorithm. For smaller ε though, the
simulations performed with the parallel algorithm have smaller correlation
times than the corresponding simulations performed with the serial method.
This is further emphasised in Table 1, where integrated correlation times are
given for different ε.

Even in the case where only results for εmin = 24 is of interest, linear
speed-up can be achieved with this method. That is, by running the simu-
lation on 8 processors it will take 1/8th the time of the serial method. If all
ε values are of interest the total speed-up is 1.4 (8×τpε(εk = 24)/

∑
k τmc(εk)),

and thus super-linear speed-up has been achieved. The same scaling is not
observed for higher ε and for ε = 33 the efficiency is 0.7 .

The rule to find the different ε-ensembles and distribute them over pro-
cessors is given by Equation 8. As mentioned above the number of accepted
exchanges is an important quantity when designing the algorithm. In Table 1,
the number of accepted trial exchanges A between neighbouring replicas is
given. A goes from 8% for ε = 24 to 16% for ε = 78 . This number directly
reflects the degree of energy overlap between the different ensembles as shown
in Figure 4b.
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(a)

(b)

Figure 4: (a) The autocorrelation of Ree for a polyelectrolyte with N = 32
and monovalent counterions at different dielectric constants, from top to
bottom ε = 24 (i), 28 (ii), 39 (iii) and 78 (iv). The thin lines are from serial
mc simulations while the thick lines are from Pε simulations performed on
n = 8 cpus with εmin = 24 and εmax = 78 . No clothed moves are used, that
is, pc = 0 . The inset is a blow-up for small t. (b) Probability distributions
of the energy for the different replicas in a Pε simulation with the same
parameters as in (a). The gray areas marks the area overlap of the ε = 24
and ε = 28 curves, and the ε = 65 and ε = 78 curves.
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The energy overlap, pictured in Figure 4b, illustrates key points of the
Pε algorithm. First of all, only nearest neighbour ensembles have overlapping
energies and thus other attempted exchanges are unlikely to be accepted.
Further, the same energy overlap is preferable for all neighbouring ε, since
having the same acceptance rate for all ε would increase the efficiency of
the method. Thus the simulation scheme can be improved by finding an
alternative to Equation 8 that will result in all energy overlaps being of the
same size.

5 Conclusion

We have given quantitative examples of how the clothed pivot algorithm
and the parallel ensemble technique speed up simulations of single chain
properties of polyelectrolytes when the electrostatic interactions are large;
for example, when the solvent has a low dielectric constant.

The clothed pivot algorithm will always improve the convergence time
for conformational properties when compared to the simple pivot; with the
gains being more significant when multivalent counterions are present, or
when the solvent has a low dielectric constant. This improvement is due to
the lowering of the energy differences when performing global moves. Adding
salt will pose additional problems due to hard core overlaps, but this method
should be able to accommodate moderate salt concentrations.

The parallel ensemble technique can, if designed properly, give a high
throughput of polyelectrolyte simulations. Linear speed-up can be found for
systems with a large electrostatic coupling. Since the amount of communica-
tion is small, the parallel ensemble technique is suitable for cheap commodity
hardware and cluster solutions.
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