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Some remarks on the inverse eigenvalue
problem for real symmetric Toeplitz matrices

N. Li∗
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Abstract

A theorem about the bounds of solutions of the Toeplitz Inverse
Eigenvalue Problem is introduced and proved. It can be applied to
make a better starting generator for iterative numerical methods. This
application is tested through a short Mathematica program. Also
an optimisation method for solving the Toeplitz Inverse Eigenvalue
Problem with a global convergence property is presented. A global
convergence theorem is proved.
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1 Introduction

The inverse Toeplitz eigenvalue problem (toiep) is to obtain a real vector
r = [r1, r2, . . . , rn]t so that the Toeplitz matrix

T (r) =


r1 r2 · · · rn−1 rn

r2 r1 · · · rn−2 rn−1
...

. . . . . . . . .
...

rn−1 rn−2 · · · r1 r2

rn rn−1 · · · r2 r1

 (1)

has a prescribed set of real numbers {λ1, λ2, . . . , λn} as its spectrum.

Landau [7] proved that every set of n real numbers is the spectrum of
an n × n real symmetric Toeplitz matrix. As the proof is nonconstructive,
Newton-type iteration methods are still the main methods to build up such
Toeplitz matrices.

The critical task for applying Newton’s method is to choose a starting
point or an initial approximation properly, otherwise the iterations either
diverge or converge to a point which is not a solution. The issue for toiep
is also mentioned by Laurie [8] and Trench [15]. Theorem 1 in Section 2
gives the bounds of each component of a solution r. Therefore it provides
guidance for choosing a starting point. A more reliable starting generator is
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thus produced. A short Mathematica program using this generator is given
in Section 3.

There are two categories of iterative methods for solving toiep. One [2,
15] exploits the Toeplitz structure while the other [5, 6, 8] does not. The
difference between the two categories is discussed in [1]. All these meth-
ods except Trench’s do not possess a global convergence property. Trench’s
method appears to be globally convergent; however, this is not proved. In
Section 4 the Levenberg–Marquardt (L-M) method [13, 14] with a global con-
vergence feature is presented. The method itself does not need any knowledge
of the Toeplitz structure, but its convergence does depend on it.

2 Bounds of solutions

Theorem 1 gives the bounds of each component of a solution r.

Theorem 1 If r = [r1, r2, . . . , rn]t is a solution of the toiep, then

r1 = σ1/n , (2)

and

|ri| ≤

√
nσ2 − σ2

1

2n(n− i + 1)
, i = 2, . . . , n , (3)

where σk =
∑n

i=1 λk
i .

Proof: Equation (2) is well known [15]. Moreover,

σ2 − (σ2
1/n) = trace(T 2)− nr2

1 = 2
n−1∑
i=1

ir2
n+1−i , (4)
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which implies (3), since all terms on the right hand side of (4) are non-
negative. See that for the problem with standardized eigenvalues (σ1 = 0 ,
σ2 = 1) [15],

|ri| ≤
1√

2(n− i + 1)
, i = 2, . . . , n . (5)

♠

Theorem 1 gives a clear criterion for selecting an initial approximation when
an iterative method is applied. The following well known theorem [9, e.g.]
follows immediately from the fact that T (r) has the same eigenvalues as
the matrix D−1T (r)D, where D is the diagonal matrix whose ith diagonal
element is (−1)i+1.

Theorem 2 For a given set of real numbers {λ1, λ2, . . . , λn} , if

r = [r1, r2, . . . , rn]t

is a solution of the toiep, then

r̃ = [r1,−r2, . . . , (−1)n−1rn]t

is also a solution of the toiep.

Theorem 2 shows that the solutions of the toiep exist in pairs. It is helpful
when we try to locate all possible solutions of the problem.

3 A Mathematica program

The starting generator is usually a subtle issue when applying iterative meth-
ods. Trench, Laurie and other authors have mentioned the issue for solving
toiep [9, 15]. Some generators make a unified starting value for r2, r3, . . . , rn,
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for example 1/2(n − 1), ignoring the differences among these components.
Theorem 1 shows that the bounds for r2 and rn differ by nearly

√
n times.

When n is large the ignorance will not be acceptable. The short Mathematica
program in Algorithm 1 is designed for solving toiep which shows how the
results of Theorem 1 are used to initiate the subroutine FindRoot. The ith
component of a starting point r is chosen randomly between

±0.5

√
nσ2 − σ2

1

2n(n− i + 1)

using Random[], which produces a random number between 0 and 1. The
algorithm is quite simple: just solve the equations obtained by equating cor-
responding coefficients of the characteristic polynomial of T (r) and P (x) =
(x− λ1) · · · (x− λn) . We test the program on a problem with an extremely
irregularly clustered spectral data {1000, 100, 99, 5, 1} which was first pre-
sented by Laurie [8].

Algorithm 1:

λ[1]=1000; λ[2]=100; λ[3]=99; λ[4]=5; λ[5]=1;
s1=Sum[λ[i],{i,1,5}]; s2=Sum[λ[i]^2,{i,1,5}];
a=s1/5;
m={{a,b,c,d,e}, {b,a,b,c,d}, {c,b,a,b,c}, {d,c,b,a,b}, {e,d,c,b,a}};
P[x ]:=Product[(x−λ[i]),{i,1,5}]
eqs=Table[ Coefficient[Det[x*IdentityMatrix[5]−m],x,i]==
Coefficient[P[x],x,i],{i,0,3}];
start[k ]:= (Random[]−0.5)Sqrt[5 s2−s1^2)/(10*(6−k))];
For[i=1, i ≤ 100, i++,
Do[sol=
FindRoot[eqs,{b,start[2]},{c, start[3]},{d, start[4]},{e, start[5]}];
Print[sol]]]

After 100 tries, the following 12 sets of solutions (r2, r3, r4, r5) = (b, c, d, e)
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with r1 = a = 241.000 were obtained: {168.853, 212.453, 209.583, 165.547},
{-191.89, 218.846, -155.583, 159.154}, {-192.256, 218.631,-155.536, 158.369},
{168.986, 212.011, 210.26, 164.989}, {-211.225, 169.31, -166.489, 211.69},
{193.838, 217.022, 152.043, 163.978}, {210.868, 168.858, 167.156, 213.142},
{-185.502, 160.523, -224.893, 220.477}, {193.472, 217.237, 152.089, 164.763},
{186.977, 159.793, 224.821, 217.207}, {167.541, 210.216, 212.945, 170.784},
{167.399, 210.668, 212.278, 171.332}.

Actually, from Theorem 2, we have obtained 24 sets of solutions. By
changing the sign of b and d of the above sets we get the other 12 sets of
the solutions. I expect to obtain more solutions (possibly 5! = 120 solutions,
see [3, 6]) if we try more times.

4 An optimisation method

In the above program the toiep is converted to the system of polynomial
equations,

fi(r2, . . . , rn) = ci(r2, . . . , rn)− pi = 0 , i = 2, . . . , n . (6)

where ci and pi are coefficients of the λn−i term of the characteristic polyno-
mial of T (r) with r1 = σ1/n and the polynomial P (x) = (x−λ1) · · · (x−λn) ,
respectively. We now apply the least squares method to find the solution of
the equations. The objective function to be minimised here is

F (r2, . . . , rn) =
1

2

n∑
i=2

f 2
i (r2, . . . , rn) .

If at a stage in the minimisation process F (r̄2, . . . , r̄n) = 0 , then r =
[r1, r̄2, . . . , r̄n]t is a solution of the toiep. The Levenberg–Marquardt (L-
M) method solves this minimisation problem. The L-M method is widely
recognized as one of the most reliable methods for nonlinear least squares
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problems. It works extremely well for functions without a high degree of
nonlinearity [10, 11, 12]. A hybrid version of the L-M method was developed
by Powell [14]. When the elements of the Jacobian of the system of equations
are exact, the method has a global convergence property under some condi-
tions. Note that a minimisation program with global convergence property
means for any starting point it always converges to either a local minimum
or a global minimum, but not always to a global minimum [4]. We state this
Powell’s result as Theorem 3.

Theorem 3 (Powell) If the functions fi have continuous, bounded first
derivatives then the L-M method will finish after a finite number of itera-
tions, due to

F (x) < E

or
F (x(k)) ≥ M‖g(k)‖2 ,

where E and M are assigned fixed positive values before the iterations begin
and g(k) is the gradient vector of F (x) at the kth iterate x = x(k) .

See that if the iteration terminates due to F (x) < E (E is a very small
number) then x is approximately a global minimum of the F (x) and is also
a solution of fi = 0 ; if the iteration stops due to F (x(k)) ≥ M‖g(k)‖2 (M is a
very large number) x(k) is approximately a local minimum of F (x). Interest-
ingly, the functions fi of a toiep satisfy all conditions of Theorem 3. Thus
we have the following theorem:

Theorem 4 Powell’s version of L-M method for solving toiep has a global
convergence property.

Proof: Let x = (r2, . . . , rn) and x(0) be an initial approximation to the
problem. Then the method restricts all iterates x(k) to the set

S = {x : F (x) ≤ F (x(0))} .
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We claim that S is a compact set. As F is a continuous function S must be
closed. Hence we only need to show that S is bounded. It can be shown that

f2 = (n− 1)r2
2 + (n− 2)r2

3 + · · ·+ r2
n − (nσ2 − σ2

1)/2n . (7)

Let c =
√

2F (x(0)) , then the inequality |f2| ≤ c gives

|ri| ≤

√
nσ2 − σ2

1 + 2nc

2n(n− i + 1)
, i = 2, . . . , n . (8)

Thus S is bounded. Because all the derivatives f ′
i are polynomials on the

compact set S, they must be continuous and bounded. ♠
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