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Analysis of a model for the treatment of
wastewater by the activated sludge process
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Abstract

We investigate a model for the treatment of wastewater in the
activated sludge process. This process is based on the aeration of waste
water with flocculating biological growth, followed by the separation of
treated waste water from biological growth. Part of this growth is then
wasted, and the remainder is returned to the system. The wastewater
reactor is assumed to be well mixed, so the mathematical formulation
for this process can be represented by a continuously stirred tank
reactor with recycle. This system is analysed by combining steady-
state analysis with path-following techniques. In practice, wastewater
is treated by a sequence of tanks arranged in series. By considering
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the performance of one tank, our work here provides a benchmark for
comparing the performances of multiple tanks.
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1 Introduction

We consider wastewater treatment using an activated sludge process. Curds [1]
provides a mathematical model of this process. Figure 1 shows a schematic
diagram of the activated sludge process occurring in a well mixed single re-
actor. There are two types of bacteria and two types of protozoa present in
the system which break down the incoming sewage.

In his original papers [1, 2], Curds investigated the model numerically
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Figure 1: A schematic diagram of the activated sludge process with a single
reactor, a settling tank and recycling.

for only one set of physical parameters by numerically solving the system
of odes. We investigate the model in greater detail by using bifurcation
analysis, similar to that carried out in [3] through path following methods
and algebraic results. We show that such methods enable optimal operating
conditions to be readily obtained.

The main focus of this paper is to analyse the single tank case so that
it serves as a benchmark when comparing results with multi-tank reactors.
Curds [1] extended the system to include up to five reactors. This poses the
question of what is the optimal number of reactors to improve the perfor-
mance of the wastewater treatment process.

2 Model equations

To model the activated sludge treatment of wastewater, we use the system
proposed by Curds [1] which consists of a well mixed single reactor. The
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sewage is pumped in at a constant rate, but then pumped out of the reactor
at a constant, but higher, rate. What flows in then gets taken out of the
system and the excess overflows into a settling tank, which concentrates the
sludge bacteria and the attached protozoa. This then flows out of the settling
tank and some of the sludge bacteria is wasted and the rest is recycled.

Apart from inflow and outflow of sewage and sludge, there are various
biological reactions breaking down the sewage to bacteria and breaking down
bacteria to protozoa, namely

S + X → X , S + B → B , B + H → H , B + P → P ,

where S, X, B, H and P are the concentrations of the substrate, sludge
bacteria, sewage bacteria, free swimming protozoa and attached and crawling
protozoa, respectively.

2.1 Dimensional model

The biochemical model here considers two types of bacteria: sludge bacte-
ria and sewage bacteria and two types of ciliated protozoa: free-swimming
ciliates and ciliates attached to sludge flocs. Together with concentration of
the substrate in the tank, the activated sludge wastewater treatment process
given in [1] is governed by a system of five odes:

V
dS

dt
= F (S0 − S)− V X

µXS

YX(KX + S)
− V B

µBS

YB(KB + S)
,

V
dX

dt
= F (X0 −X) + aF (bX −X) + V X

µXS

KX + S
,

V
dB

dt
= F (B0 −B) + V B

µBS

KB + S
− V H

µHB

YH(KH + B)
− V P

µP B

YP (KP + B)
,

V
dH

dt
= F (H0 −H) + V H

µHB

KH + B
,
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V
dP

dt
= F (P0 − P ) + aF (bP − P ) + V P

µP B

KP + B
,

where S0, X0, B0, H0 and P0 are the various concentrations in the inflow,
V is the volume of the reactor tank, F is the rate of the inflow, a is the
recycling factor and b is the concentration factor of the sludge and attached
protozoa after passing through the settling tank. The biological reactions are
assumed to follow Michaelis–Menton dynamics [4], where µi is the maximum
specific growth rate, Yi is the yield coefficient and Ki is saturation constant
for the various bacteria and protozoa i = X, B, H, P .

2.2 Dimensionless equations

By introducing dimensionless variables for the substrate concentration (S∗ =
S/KX), the sludge bacteria concentration (X∗ = X/(YXKX)), the sewage
concentration (B∗ = B/KX), the free-swimming protozoa (H∗ = H/(KXYH)),
the attached and crawling protozoa (P ∗ = P/(KXYP )) and time (t∗ = µXt),
the model in dimensionless form is

dS∗

dt∗
=

1

τ ∗
(S∗0 − S∗)− S∗X∗

1 + S∗
− µ∗b

YB

.
B∗S∗

K∗
B + S∗

, (1)

dX∗

dt∗
=

1

τ ∗
(X∗

0 −X∗) +
a(b− 1)

τ ∗
X∗ +

S∗X∗

1 + S∗
, (2)

dB∗

dt∗
=

1

τ ∗
(B∗

0 −B∗) +
µ∗BS∗B∗

K∗
B + S∗

− µ∗HB∗H∗

K∗
H + B∗ −

µ∗P B∗P ∗

K∗
P + B∗ , (3)

dH∗

dt∗
=

1

τ ∗
(H∗

0 −H∗) +
µ∗HB∗H∗

K∗
H + B∗ , (4)

dP ∗

dt∗
=

1

τ ∗
(P ∗

0 − P ∗) +
a(b− 1)

τ ∗
P ∗ +

µ∗P B∗P ∗

K∗
P + B∗ , (5)

where τ ∗ = (µXV/F ) is the dimensionless residence time.

The dimensionless model contains eight experimentally controllable pa-
rameters (S∗0 , X∗

0 , B∗
0 , H∗

0 , P ∗
0 , τ ∗, a and b) and seven biochemical kinetic
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constants (K∗
B, K∗

H , K∗
P , Yb, µ∗B, µ∗H and µ∗P ). Note that the constants a

and b only ever appear in the combination a(b − 1), reducing the number
of experimentally controllable constants to seven. The values for the kinetic
constants are determined by the choice of microbial system. We take the di-
mensionless residence time (τ ∗) as the primary bifurcation parameter, leaving
the dimensionless substrate concentration in the feed (S∗0) and the dimen-
sionless sewage bacteria in the feed (B∗

0) as possible secondary bifurcation
parameters.

A feature of this dimensionless scheme is that there is a one-to-one rela-
tionship between the dimensionless variables and their dimensional counter-
part. Hence we will often write the dimensionless residence time as just the
residence time and so on for other quantities.

3 Behaviour of the system

There are two classes of behaviour in the system (1)–(5): steady state (Fig-
ure 2a) and periodic solution (Figure 2b). Both of these have been noted
in [1, 2]. As mentioned in [5], “the periodic operation of chemical reac-
tors can lead to improved reactor performance by increasing more reaction
products or a more valuable product distribution than a steady-state reac-
tor operation.” We verify if this occurs for the one reactor system studied
here. Following [1], we choose the biochemical parameters in Table 1. We
also define the inflow concentrations as S0 = 200mg/l, X0 = 0mg/l (sterile
feed), B0 = 30mg/l, H0 = P0 = 0mg/l (no protozoa in the inflow), Recycle
rate of 100% (a = 1) and Concentration Factor of 1.9 (b = 1.9). These give
the dimensionless parameters S∗0 = 40/3 , X∗

0 = H∗
0 = P ∗

0 = 0 , B∗
0 = 2 ,

K∗
B = 2/3 , K∗

H = K∗
P = 4/5 , µ∗B = 5/3 and µ∗H = µ∗P = 7/6 . The dimen-

sional parameter given above were also used in [5], so we believe they are
representative of realistic values.
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Figure 2: A numerical solution of (1)–(5) for (a) τ ∗ = 3 and (b) τ ∗ = 1.3 .
Note that the solutions have been scaled and translated to fit on the same
graph.

Table 1: Biochemical parameters
Organism Maximum specific Saturation Yield

i growth rate µi (h−1) constant Ki (mg/l) coefficient Yi

X 0.3 15 0.5
B 0.5 10 0.5
H 0.35 12 0.5
P 0.35 12 0.5
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Table 2: steady states for τ ∗ = 3 .
Case S∗ X∗ B∗ H∗ P ∗

1 111−
√

12001
12

0 97+
√

12001
24

0 0

2 1
29

240010
2001

61
23

0 0

3 317+
√

123609
51

0 2
85

0 2823−5
√

123609
51

4 1
29

11987650
90219

2
85

0 20556
1037

5 71+
√

7041
15

0 8
25

897−5
√

7041
150

0

6 1
29

697418
5307

8
25

2682
1525

0

3.1 Steady state analysis

The steady states of (1)–(5) are found by setting the time derivatives to
equal zero. The resulting equations can be solved analytically. The solutions
fall into six cases, each corresponding to different combinations of X∗, H∗

and P ∗ equaling to zero. As an example, and as starting points for the path
following methods, we provide the steady states for τ ∗ = 3 in Table 2.

3.2 Numerical results

Although the steady-state solutions of (1)–(5) can be found analytically, we
choose to find the solutions numerically using the path following software
package Auto [6], as it easily determines the stability of the solutions by
finding the eigenvalues of the corresponding Jacobian and determines the
location of Hopf bifurcations and branch points.

Figures 3–7 shows how the different cases of steady-solutions depend on
the (dimensionless) residence time, τ ∗.

We note that the curves are monotonic, either increasing or decreasing,
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Figure 3: Auto shows the location of steady state solutions of (1)–(5) as
functions of the residence time τ ∗ for S∗, X∗, B∗, H∗ and P ∗ in Figures 3–7
respectively. Note: steady state solutions from the different cases can lie on
top of each other. For example, here the steady state solutions for Cases 2,
4 and 6 lie on each other on the lowest curve. This explains why six distinct
curves are not observed in each of Figures 3–7.
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Figure 4: as for Figure 3.

Figure 5: as for Figure 3.
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Figure 6: as for Figure 3.

Figure 7: as for Figure 3.
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as a function of τ ∗. In the figures, the filled-in square boxes represent Hopf
bifurcations, where the eigenvalues of the Jacobian matrix are purely imagi-
nary, indicating the onset of the periodic solutions, and represented by open
circles on the plots. We plotted the time average of the periodic solutions.
Although the open circles imply that the orbits are unstable, by analysing
the eigenvalues of the monodromy matrix, we find that the orbits are stable
in the S∗-B∗-H∗-space (that is, choosing X∗ = P ∗ = 0 initially), as seen in
Figure 2b.

3.3 Analysis of the Hopf points

Figures 3–7 show that two Hopf points occur at τ ∗ ≈ 1.09 and τ ∗ ≈ 1.42 . By
varying one of the controllable parameters, the location of the Hopf points
also changes.

In Figure 8a, by decreasing S∗0 the two Hopf points move closer together,
until they coalesce at a point (known as the double Hopf point or the H21 de-
generate point), after which there are no Hopf points, as shown in Figure 8b.
Decreasing B∗

0 , the Hopf points reappear again, as shown in Figure 8c. From
Figure 8 and other numerical investigations, we note that the Hopf points
only seem to occur on one branch of the steady state solution.

We can find an analytic relationship between the location of the two Hopf
points in the (τ ∗, S∗0)-parameter plane (see Figure 9a). The location of the
H21 point is (τ ∗, S∗0) ≈ (1.28, 10, 59). Hence for S∗0 < 10.59 , no Hopf points
will occur and therefore no oscillations can take place for any residence time
or flow rate.

By repeating the above process for different values of B∗
0 , we determine

the H21 locus in the (S∗0 , B
∗
0)-parameter plane, as shown in Figure 9b. This

divides the parameter space into two regions where oscillations are and are
not possible for a range of residence times.
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(a)

(b)

(c)

Figure 8: The location of the Hopf bifurcations for (a) S∗0 = 12 and B∗
0 = 2 ;

(b) S∗0 = 10 and B∗
0 = 2 ; (c) S∗0 = 10 and B∗

0 = 1.7 . Note that the Hopf
points are denoted by solid black boxes.
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(a) (b)

Figure 9: Graphs showing (a) the location of the Hopf locus for B∗
0 = 2

and (b) the two regions where oscillations are and are not possible in the
(S∗0 −B∗

0)-parameter space.

4 Performance of a single reactor

Using the analysis from the previous sections, we now determine the con-
ditions for optimising the performance for a single reactor. The definition
of reactor performance is very much dependent upon the process involved.
For example, Sidhu and Nelson [3] used the reactor productivity, X∗/τ ∗, as
a performance indicator. Here we choose the treatment efficiency, proposed
in [7]:

Treatment Efficiency = 100×
(

S∗0 − S∗

S∗0

)
.

The two extreme cases are: S∗ = S∗0 where none of the substrate has been
broken down, so the efficiency is 0%; and S∗ = 0 where all of the substrate has
been broken down, so efficiency is 100%. In Figure 10, we show the different
efficiencies for the four different steady state substrate concentrations as a
function of the residence time. Note that for H∗ = P ∗ = 0 (Case 2 from
Section 3.1), H∗ = 0 (Case 4) and P ∗ = 0 (Case 6), the steady state substrate
concentrations are the same and so lie on top of each other, on curve D. For
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Figure 10: The treatment efficiency of a single reactor as a function of the
residence time where: A denotes X∗ = H∗ = 0 ; B denotes X∗ = P ∗ = 0 ;
C denotes X∗ = H∗ = P ∗ = 0 ; and D denotes H∗ = P ∗ = 0 , H∗ = 0 and
P ∗ = 0 .
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the chosen parameters, only two of the branches are globally stable: Case 1
for τ ∗ < 0.114 and Case 4 for τ ∗ > 0.114 . When measuring the efficiency of
the system, we only have to worry about these two cases. From the figure,
one conclusion would be to make the residence time as long as possible,
corresponding to slowing down the inflow rate or having a reactor with a very
large volume. However, infinite residence times are not possible in practice.
For a desired efficiency of 99%, we need to have a residence time τ ∗ > 0.85
(that is, residence time longer than 2.83 hours). If we were interested in
periodic solutions, as they exist for 1.09 < τ ∗ < 1.42 (between the two Hopf
points from Figures 3–7), the efficiency ranges between 39% and 68%, which
is significantly lower than optimal and gives a different result than [5].

5 Conclusions

We undertook a preliminary investigation of the activated sludge process
for wastewater treatment using a single reactor. The process is modelled
using five odes, corresponding to the change in the various concentrations:
substrate, sludge bacteria, sewage bacteria, free swimming cilliated protozoa
and attached and crawling protozoa.

Using the path following software package auto [6], we carried out a
steady state analysis. We showed that for different controllable parameters,
namely the substrate and sewage bacterial concentrations in the inflow and
the rate of inflow, it is possible to have either a steady state or periodic
behaviour. Consequently, we also find operating regimes where periodic be-
haviour is not possible.

Finally, we investigated the conditions for increasing the performance of
the system. We used the treatment efficiency as the performance indicator.
We found that, in general, the longer the residence time, the better the effi-
ciency. Furthermore, we found that, unlike the observations of [5], periodic
operation did not improve the efficiency of this system (efficiency was sig-
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nificantly lower than the steady state operation) for the parameter values
considered by Curds [1]. The analysis undertaken here will be used as a
benchmark for further work, particularly when we compare the performance
between the single reactor and multi-reactor cascade for the wastewater treat-
ment system.
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