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Table 1: acronyms

aep annual exceedance probability
alarp as low as reasonably practicable
bca bias-corrected and accelerated
bfd Burdekin Falls Dam
ci confidence interval
eo exponential distribution with an offset
gtsm generalised tropical storm method
gtsrm generalised tropical storm revised method
gp generalised Pareto
par population at risk
pmp probable maximum precipitation
rms root mean square
TL tera-litre, one million mega-litres
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1 Problem description

The Burdekin Falls Dam (bfd) in North Queensland provides bulk non-
potable water, predominantly to agriculture, local towns and the city of
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Townsville. At capacity, the dam holds 1.86 teralitres (one teralitre, TL, is
one million megalitres) and the lake behind it covers an area of 220 km2. The
dam discharge is an overflow weir 504m wide capable of a flow that is 15m
above the weir lip. This weir routinely spills for several months each year.
The dam catchment covers an area of 114 770 km2, making this the largest
dammed catchment in Queensland. The catchment is subject to extreme
rainfall events originating from both monsoonal and tropical cyclone events,
and falls within the Generalised Tropical Storm Method (gtsm) zone [11].

SunWater operate the bfd, and are considering increasing the stored capacity.
Any structural changes to the dam are required to comply with recently
revised Dam Safety Guidelines [7, 8, 10]. Existing dams in Queensland must,
in any case, comply with these guidelines by 2035.

A review of the revised guidelines as they apply to the bfd by the dam opera-
tors, SunWater, identified a difficulty associated with the large catchment size.

A first step in the guidelines is to determine the population at risk, in the
event of a flood that causes dam failure, over and above the population at
risk (par) if the dam was not there. SunWater assess the par value for bfd
to be 87. Then Table 2 of the guidelines, reproduced and annotated with
the par of 87 in Figure 1, indicates that under the principal of a risk that is
as low as reasonably practicable (alarp), the dam must be designed for an
event with an annual exceedance probability (aep) of 10−6 or smaller, that is,
approximately a one in a million year event. This also falls at the limit of the
range of events considered in Australian Rainfall and Runoff [2], which contains
details about how to calculate the design rainfall given the aep, as illustrated
in Figure 2, placing it at the most extreme end of extreme events, and well
beyond the credible limit of extrapolation. Extreme value probabilities are
complicated by the sparsity of comparable events in the historical record,
and thus standard measures of extrapolation are not suitable, as opposed
to moderate or large events where interpolation or standard extrapolation
methods can be employed, even for a large catchment area.

A dam is usually designed by deciding what rainfall or flood event has the
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Figure 1: The required risk (annual exceedance probability) of the designed
maximum rainfall, for existing and for new dams [9, Fig. 1]. The values for a
par of 87 for the Burdekin Dam are indicated by the black lines.
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desired aep, and designing for that as an extreme event. The aep is related
to a series of design figures determined for each dam known as the probable
maximum precipitation (pmp). The aep of pmp is determined as a log-log
function of the catchment area in Australian Rainfall and Runoff [2, Figure 6]
and is reproduced here in Figure 3.

This assumed relationship is defined in the relevant guidelines [2, 8] only for
catchments up to 100 000 km2 in area, with the bfd catchment falling outside
of this range at 114 770 km2. Our figure extrapolates to larger areas, assuming
linear behaviour in the log-log plot, so that we can show where the bfd falls
(dashed lines in Figure 3).

However, the aep of the pmp that is obtained in this way is 10−4, which is a
higher risk than the required alarp value of 10−6, so interpolation to the
required value is not possible. Extrapolation beyond the pmp is required, to
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Figure 2: A conceptual graph of the design rainfall or flood versus the aep
[3, Figure 8.1.1]. The aep for the Burdekin Dam is at the rightmost limit at
one in 106 years.

more extreme events with a smaller risk, and there is at this time no basis for
such extrapolation in existing regulations. Consequently, it is not possible,
under the usual rules, for the bfd to comply with the requirements as the
large dam catchment area places the bfd just outside the usual regulatory
structure.

The authors of Australian Rainfall and Runoff acknowledge, in regard to
assigning an aep to the pmp, that “there is no conceptually sound, defensible
basis upon which to make recommendations for design practice” [2, p.17,
section 3.5.1].

The somewhat arbitrary nature of the assignment of risk to dams in this
category, and the resultant conclusions for large dam catchments, motivates
SunWater to seek a more rigorous understanding of risk and severe weather
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Figure 3: The aep of pmp plotted against catchment area with extrapolation
to larger catchments (solid line), adapted from the Guidelines on acceptable
flood capacity for water dams [8]. The dashed line shows where the Burdekin
Dam catchment falls.

events in the region in order to better understand the risks to be managed in
the dam’s construction and operation.

The problem, as posed to the Study Group, is to either work on better ways
to assign an aep to the pmp, or to examine the estimation method for the
pmp, incorporating local characteristics.
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2 Probable Maximum Precipitation events
and the Generalised Tropical Storm Revised
Method

The probable maximum precipitation (pmp) refers to the greatest depth of
precipitation that is meteorologically possible over a defined geography in a
given period of time at a particular time of the year, without allowance for
long term climate trends [11]. The annual exceedance probability (aep) of the
pmp is theoretical, and acknowledges that the method of determining pmp is
itself subject to risk. A range of methods are used to estimate the pmp [1] and
its aep. Within Australia, the Bureau of Meteorology endorses two methods
for estimating the pmp depending on the location under consideration, and
for the Burdekin Falls Dam (bfd) the appropriate method is the Generalised
Tropical Storm Revised Method (gtsrm) for Estimating Probable Maximum
Precipitation as specified by Walland et al. [11] and related publications.

This article does not concern itself with the methodology for arriving at a
pmp. Since pmp events are both spatially and temporally dependent, it is
standard practice to consider a series of events relating to storms of various
duration, where spatial dependencies are incorporated through consideration
of topographic enhancement and the area of the catchment.

When assessing the impact of a pmp event on the dam, spatio-temporal
factors are taken into account, and a rainfall that varies across the catchment
is modelled in detail, with a different spatial distribution used for different
storm durations, based on historical observations and measurements of large
storm events in North Queensland over twenty years. For the bfd, the most
critical pmp event is the 72 hour 570mm event, as this results in the maximum
flow over the weir of any of the pmp scenarios stipulated for consideration.
Hereafter referred to as the design pmp, the 72 hour 570mm pmp event is
the focus of this article.

The dam catchment has three main sub-catchments, one in the north, one
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to the west, and one in the south. The northern sub-catchment provides the
greatest concern for flood risk at the dam: the region is associated with a fast
response; with flows reaching the weir on the order of a day; and the north-
east of the catchment having a small area where topographic enhancement is
relevant. The non-uniform response times for the sub-catchments is acknowl-
edged in runoff routing simulations that have been conducted by SunWater,
summing the catchments to obtain the resulting flows at the dam, and also
simulating the resulting river flows beyond the dam to the sea. In this way,
modelling accounts for the possibility that rainfalls are temporally aligned
such that the flood peaks of the sub-catchments coincide at the dam lake.

One of the challenges facing the Study Group was to interpret the regulations
for dam construction in Queensland, and the problem summary above reflects
our interpretation of those regulations. The main issue is that the pmp,
which usually serves as a worst event with a smaller risk or aep than is to be
designed for, cannot serve as a worst event for bfd as the regulations stand.
Any redesign needs to involve calculations of risk (aep) that is much less
probable than that of the pmp event.

A major focus of the group was to explore a range of measures of risk for
extreme weather events. Following a description of the statistical methods in
Section 3, the catalogue of extreme weather events used to develop the pmp
profiles is examined in Section 4, indicating that the identified pmp may not
accurately reflect a theoretical worst case scenario. An alternative measure of
risk for the bfd, namely that associated with the height of the dam lake, is
explored in Section 5. The article concludes with a discussion in Section 6.

3 Statistical method

The choice of statistical method used in the analyses of Sections 4 and 5 is
motivated by the focus of the analyses on extreme data above a certain high
threshold value, or exceedance data.
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If the distribution of the data x is known, then it is straightforward to specify
the distribution for the exceedance data y above a threshold u (y = x− u)
using the conditional probability

Pr (X > u+ y | X > u) =
1 − F(u+ y)

1 − F(u)
, y > 0 , (1)

where F(x) is the distribution function of the data.

Often, as is the case in the analyses to follow, the distribution of X is unknown,
thus specification of the exceedance data distribution relies instead on an
approximation by its limiting distribution, which is the generalised Pareto
distribution for a wide range of data [5].

The generalised Pareto (gp) distribution is characterised by its shape pa-
rameter ξ, scale parameter σ, and threshold u, with cumulative distribution
function

F(y) = 1 −

(
1 +

ξy

σ

)−1/ξ

. (2)

Estimation of the gp distribution parameters involves a two-step procedure.
First, the threshold u value is ascertained. Then, fixing u, the shape and
scale parameters are estimated by maximising the likelihood function L(·)
(product of the data points probability [12]) of the gp distribution for the
particular data set (satisfying the fixed threshold condition). The threshold
is determined here by fitting the gp distribution to a range of threshold
values and monitoring the stability of the other two parameter estimates. The
smallest candidate threshold value where the other two parameters stabilise
is taken to be the estimated threshold value. An alternative method of
determining the threshold value is through using the mean residual life plot.

The goodness-of-fit of the fitted gp distribution is then assessed using four
common visual diagnostics comparing the distribution function (probability
plot), quantiles (quantile plot), return levels (return level plot), and distri-
bution (density plot) of the fitted distribution with the empirical estimates
obtained directly from the data set.
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The return levels yp are obtained by inverting F(yp) = 1 − p for a specified
‘return period’ or ‘repeat time’ 1/p. The return levels are also commonly
used for model inference in such applications. The confidence intervals
associated with the return level estimates are approximated by the return
level’s profile log-likelihood as explicit representation of the confidence limits
are not available.

The profile log-likelihood (lp(yp)) is the log-likelihood function l(yp, θ) =
log L(yp, θ) expressed as a function of solely the parameter of interest (yp here).
The explicit dependence of these functions on the data is omitted for clarity.
The other parameters, denoted generically by θ, are set to the corresponding
values that maximises the likelihood, given a value of yp, that is

lp(yp) = max
θ
l(yp, θ).

The confidence interval for yp is then given by

2 [lp(ŷp) − lp(yp)] ∼ χ
2
1

where ŷp is the estimate of yp, and χ21 is the χ2 distribution with one degree
of freedom. Denoting the (1−α) quantile of the χ21 distribution as χ21,1−α, the
100(1−α)% confidence interval is formed by the two values of yp where lp(yp)
is 1

2
χ21,1−α less than lp(ŷp).

3.1 Exponential distribution with an offset

A special case of the gp distribution is considered in Section 5, namely the
exponential distribution with an offset (eo distribution), which arises as the
limit of the gp distribution as ξ→ 0. The eo distribution is an exponential
distribution with mean σ whose values are shifted by u (y = x − u). The
cumulative distribution function for the eo distribution is

F(y) = 1 − exp(−y/σ). (3)
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The use of the eo distribution is driven by the poor fit of the gp distribution
to the small data set in Section 5. The eo distribution can be viewed as a
simplification of the gp distribution in that there are only two parameters
to estimate (since ξ is fixed at 0). The trade-off for this simplification is
that the return level for the eo distribution only increase linearly on the
log scale whereas the gp distribution allows greater flexibility in the return
level behaviour.

The small data set in Section 5 also motivates modifications to both the
estimation procedure and goodness-of-fit check, which are more robust.

The eo distribution is fitted to the data by non-linear least squares with
squared errors on the probability scale normalised by the variance from order
statistics, thus minimising the sum of squares

n∑
i=1

[
i/(n+ 1) − (1 − e−(x(i)−u)/σ)

]2
i(n+ 1 − i)(n+ 1)2/(n+ 2)

, (4)

where x(i) is the ordered data i, and n is the length of the data set. The
numerator of the fractions here are the square of the difference between
the expected probability and that given by the distribution, whereas the
denominator is the variance of the corresponding order statistic.

The goodness-of-fit for the eo distribution is evaluated using three variants of
the Kolmogorov–Smirnov test. These three variants assess three measures of
discrepancies in probabilities between the empirical and fitted distributions;
maximum difference in probability, maximum weighted difference in probabil-
ity where the weights are the standard deviation of the order statistics, and
root mean square (rms) of the weighted differences in probability (that is,
the square root of expression (4)).

The distributions of the test statistics are generated by a parametric bootstrap
using samples from the exponential distribution, and the statistics obtained
from the data are compared to determine the adequacy of the fit.
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The confidence intervals for the return levels are estimated using bias-corrected
and accelerated (bca) bootstrap [6].

4 Volumetric examination of extreme weather
events in the gtsm zone

A volumetric analysis of the 122 storms in the Catalogue of Significant Rainfall
Occurrences of Tropical Origin Over Australia [4] is conducted as a first step to
understanding the risk (or return time) associated with precipitation events.

Beesley et al. [4, Table 3] provide the mean rainfall depth over each standard
area for storms in the catalogue. The standard areas reported range from 100
to 150 000 km2. The maximum volume of rain that could have fallen over
a Burdekin Falls Dam (bfd) catchment area rounded to 115 000 km2 is
calculated for each of the storms. Analysis indicates that the greatest volume
observed over this catchment size is 70.35TL, from the storm 1974jan23-
6, which was centred in the district of Fielding in far North Queensland,
approximately 520 km west of Townsville. Under the prescribed assumptions,
the volume of water associated with this storm exceeds that corresponding
to the design probable maximum precipitation (pmp) event, namely 65.5TL.
This assumes a spatially uniform distribution within each areal polygon,
which is unlikely, and has the potential to result in the impact on the dam
being under-estimated.

Approximating the storms as concentric circles, we fit the rainfall data from
Beesley et al. [4, Table 3] to an intensity profile of the form

f(r, t) = ate−br, (5)

where r is the circle radius [km], t is the storm duration [days], and with the
parameters a [km/day] representing a constant rainfall rate, and b [1/km]
the spatial scale of the storm. The parameters a and b are determined under
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Figure 4: Histogram of volumetric measure of rainfall (ml) for a catchment
of size 115 000 km2.
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the concentric circle assumption, the average rainfall depth is

d̄(R) =
2π

∫R
0 f(r, T)r dr

πR2
=

2aT

b2R2

[
1 − (1 + bR)e−bR

]
. (6)

The total volume of rain in a catchment of size R∗ due to the storm is therefore

V =
2πaT

b2

[
1 − (1 + bR∗)e

−bR∗
]

, (7)

where R∗ =
√
A∗/π with A∗ = 115 000 km2 for the bfd catchment.

Applying (7) to the storms surveyed by Beesley et al. [4] provides a distribution
of extreme rainfall events by volume for catchments of the size of the bfd,
which is shown in Figure 4. This model results in a maximum volumetric
rainfall of 60.5TL, which is of a similar magnitude, albeit less than, the design
pmp event. This is also less than the rainfall observed in storm 1974jan23-6
due to smoothing of the distribution.
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Figure 5: Threshold parameter search for the storm volume analysis.
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4.1 Statistical analysis of storm volume data

The estimated rainfall data for the 115 000 km2 area for each of the 122 storms,
shown in Figure 4, are then fitted to a generalised Pareto (gp) distribution.
From Figure 5, the gp threshold value is estimated to be 10 as the shape and
scale parameter estimates stabilised (excluding statistical error) for threshold
values of 10 and higher.

Fixing the threshold value at 10, the estimated shape and scale parameters
(with standard errors in parentheses) are −0.185 (0.096) and 15.048 (2.064)
respectively. The fitted gp model did not exhibit any obvious lack of fit from
the model fit diagnostics (Figure 6).
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Figure 6: Goodness-of-fit plots for the fitted gp distribution of rainfall in TL
over 115 000 km2 with threshold set to 10.

The one in a million year event estimate from the fitted distribution is 84.9TL
with a 95% confidence interval (ci) of [63.4, 239.2] (obtained from the profile
log-likelihood of Figure 7). The estimate is in excess of the design pmp event
which, from this analysis, corresponds to approximately a 1-in-529 year event.

The storm catalogue of extreme events is relevant to the Generalised Tropical
Storm Region, and thus the estimated return levels are for extreme events
throughout this region. That is, the above analysis identifies a one in a million
year event occurring in the Generalised Tropical Storm Region, which may
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Figure 7: Return level profile log-likelihoods for the 106 year and 105 year re-
turn period event estimates. The dashed horizontal line denotes the maximum
profile log-likelihood value (−352.6) less χ21,0.95 to obtain the 95% confidence
limits for the estimates. The maximum profile log-likelihood values were the
same for both cases.
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or may not impact on the bfd. The probability of a severe event impacting
on the bfd is yet to be accounted for. Approximately one in ten events in
the catalogue impacted the bfd catchment, therefore there is approximately
a probability of 0.1 of an extreme event impacting the catchment, which
suggests that the appropriate one in a million year event corresponds to the
repeat time of 105 years, namely a storm volume of 81.5TL (95% ci: [62.7,
191.9] TL obtained from profile log-likelihood of Figure 7).

The impact of this on lake levels can only be calculated with careful and
detailed flow analyses of the entire catchment, and also depends on the
temporal and spatial distribution of the rainfall, and the bathymetry at
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the lake. This analysis was not conducted, instead a rough indication for
comparison is obtained as the pmp for bfd includes a 570mm total rainfall
event that occurs over a total of 120 hours. Converting 81.5TL to mm of rain
evenly distributed over an area of the bfd catchment gives a total rainfall of
about 710mm.

The above analysis indicates that caution must be employed in the use of the
design pmp event to represent a theoretical worst case scenario for dam safety
planning. From a strictly volumetric perspective, it is evident that storms of a
similar magnitude to the design pmp event have been recorded [11]. Further,
the design pmp event corresponds to a 1-in-529 year event, with the one in a
million year event being approximately 40% more severe. Care must be taken
with drawing conclusions from such a limited dataset, with the estimates
obtained dependent on the statistical assumptions made and the choice of
extreme events.

Given the underlying assumptions to the above model for extreme events,
both in terms of the spatio-temporal distribution of rainfall and the statistical
assumptions of the model, the identified extreme events and return period
may be directly employed for dam safety planning. Nevertheless, this analysis
demonstrates that the risk associated with the design pmp event identified may
be unacceptably high, and provides a preliminary estimate of the magnitude
of the event that corresponds to the prescribed risk ceiling.

In the next section, an alternative measure of risk is explored through the
analysis of observations of weather impact at the dam.

5 Identifying the Annual Exceedance
Probability of extreme dam events

Although the references to risk for dam safety relate primarily to the annual
exceedance probability (aep) of probable maximum precipitation (pmp), the
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guidelines are designed to ensure an acceptable level of risk to downstream
communities. It follows that the principle concern is the ability of the dam to
safely withstand severe weather events. As discussed in Section 4, the nominal
most severe pmp event relevant to the bfd, a 72 hour 570mm rainfall, is not
sufficiently improbable to satisfy community expectations.

A key design criteria for dam safety at Burdekin Falls Dam (bfd) is the
maximum height of water above the weir lip before overtopping the adjacent
dam walls. This height is currently 15m. Overtopping the dam walls carries
a risk of scouring away the earthworks and bypassing the existing weir with a
wall rupture, or undermining the weir and toppling it, resulting in a flood
event downstream.

Water heights in Lake Dalrymple, the body of water retained by the dam,
have been recorded at various timescales, usually at least daily, over the
27 years of the dam’s operation, although with the introduction of automatic
recording, the recording frequency has reduced to three-hourly (Figure 8).

These records of water height over the spillway are utilised to identify an
exceedance probability, expressed as a return time, for severe events, and hence
identify the required dam wall height to satisfy the nominal one in a million
year event criteria required for bfd as discussed in Section 1. This degree
of extrapolation, even to 104 years, introduces a large degree of uncertainty
into the estimate, with further uncertainty due to the choice of model. The
inherent uncertainty in such estimates must be fully accounted for in designing
dam safety.

5.1 Statistical analysis of flood level data

Due to the presence of the spillway, it is rather natural to consider mea-
surements above the height of the spillway to have a different interpretation
compared with measurements below spillway. This motivates the use of the
gp distribution of daily maximum with a minimum threshold value set to
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Figure 8: Recorded water level at bfd from construction in 1987 to 2015.
The fifteen extreme flood peaks are identified by red asterisks. On this scale,
the weir lip is at a height of 154.2m with a maximum design water height
of 169.2m.
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be the height of the spillway. The gp distribution estimation for a range of
threshold values are shown in Figure 9. The maximum likelihood estima-
tions for threshold values above 158.5 were unreliable as they converged to a
boundary point on the parameter space and were omitted.

From Figure 9, the estimates do not appear to stabilise across the range of
threshold values. There is therefore no clear choice for a suitable threshold
value based on these estimates. Hence, the threshold value was instead set to
the height of the spillway (154.2m) to enable the analysis to move forward,
noting that the model fit may be poor. The goodness-of-fit for this fitted gp
model is first assessed by comparing both the probabilities and quantile plots
(as shown in Figure 10). The strong deviation from linearity in the quantile
plot indicates that the model fit is poor and any extrapolation (as required)
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Figure 9: Maximum likelihood estimates and their confidence intervals for the
shape (top) and modified scale (bottom) parameters of the generalised Pareto
distribution for threshold values from 154 to 158.5 in increments of 0.25.
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Figure 10: Probability (left) and quantile (right) plots of the fitted gp model
for the flood level data with the threshold value set to be the height of the
spillway.
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using the model would be suspect.

Due to the difficulty in ascertaining an appropriate threshold value and the
poor model fit for the gp model with a threshold value selected from the
application, we instead resort to a simplification of the model, namely the
eo distribution.

Another concern is that even taking only daily maxima, the data could very
well still exhibit dependence from previous time points. Specifically for the
application, it is possible for an extreme rainfall event to affect the dam water
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Table 2: Peak flood levels (metres above weir) for bfd, as identified in
Figure 8.

Date Level
1991-01-15 4.73
1991-02-21 6.65
1997-03-26 3.40
1998-01-13 4.67
2000-02-27 3.36
2001-01-04 3.13
2002-02-19 3.45
2005-01-27 2.89
2007-02-05 3.53
2008-01-18 3.37
2008-02-19 4.85
2009-02-06 6.53
2010-12-29 3.43
2011-02-06 4.17
2012-03-23 4.90

levels for multiple days given the time it takes for the rain to flow downstream
to the dam as well as potentially rainfall events that last more than one day.
Given the relative ease of fitting the eo distribution, we instead use only a
selection of extreme flood events from the data.

Fifteen extreme flood events were identified from the recorded history of dam
lake heights, as indicated by the red asterisk in Figure 8 and listed in Table 2.
While some of these events may appear co-incident, these peaks are at least
30 days apart, and are therefore considered to be independent events. As
our interest here is in the peak flow, as opposed to the total flow volume
during the event, we consider only the observed peak flow corresponding to
the extreme flood event, which are hereafter referred to as the flood peaks.
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Figure 11: (a) Fit of eo distribution to the flood peaks with the probability
shown as a repeat time in years; and (b) the goodness of fit test.
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The available records indicate a maximum flood of 6.65m (above the spillway),
with the current dam design featuring a weir depth of 15m. Using the formula
for weir flow the relative volume flow for the depth of 15m is (15/6.65)3/2 = 3.4,
so the weir is capable of handling a flood more than three times the maximum
observed in its 27 years of operation.

An eo distribution is fitted to the flood peaks to estimate the maximum
expected flood over prolonged periods. The fitted distribution is shown in
Figure 11a with the probability converted to a repeat time in years, which is
the reciprocal of the probabilities.

Comparing the statistics from the flood peaks with the simulated distributions
in the goodness of fit tests gives probabilities (standard measures) of 0.80,
0.67 and 0.73 for the three tests mentioned above respectively, as shown in
Figure 11b. These goodness-of-fit probabilities are in the expected range,
and therefore provide no evidence of a lack of fit. In the worst case, 20% of
randomly generated samples fit worse than the flood peak data.

While the eo distribution is a good fit to the data, this does not preclude
other distributions giving a similar fit, and such alternative distributions will
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give different probabilities.

The probability distribution obtained is extrapolated to estimate the expected
maximum flood height in a given number of years; such figures are used in
design calculations. Extrapolating the eo distribution from Figure 11a out
to a one million year time horizon indicates that the current dam wall relates
to a one in 5 000 year event, while the one in a million year event corresponds
to 177m. This is about 7m above the current design height for water at the
spillway of the bfd.

Figure 12 shows the extrapolation of the fitted distribution to estimate
the average time period in which a flood level will reach the top of the
dam (5 000 years with 95% ci [283, 5.86 · 105]) and the estimated maximum
flood level for a million years (177.3m with 95% ci [169.4, 187.5]). The cis
associated with both these estimates are large.

The repeat times are averages and for this application it is more useful to
look at the distributions. Estimates of the distributions of the return time for
a given flood level or the estimated maximum flood for a given time period
are obtained by bootstrapping, by random selection from the data set with
repeats. Figure 13a shows the bootstrap distribution of the time to a flood
reaching the top of the dam. Figure 13b shows the bootstrap distribution of
flood levels for one hundred, ten thousand, and a million years.

These distributions do not give reliable values for extreme probabilities (e.g.,
reaching the top of the dam in 100 years). For these, a distribution could be fit-
ted to the bootstrap values and then extrapolated. Of course, values obtained
would still be subject to variation due to limited data and model assumptions.

5.2 Statistical analysis of flood flow transformed data

As an alternative model assumption, the flood volume flow, rather than the
flood level, is fitted to an eo distribution. The flood levels are converted to
flow volumes (m3/s) using the rectangular weir formula that gives the flow
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Figure 12: Extrapolation of the probability distribution for flood peak heights
out to a one in a million year event. The current dam wall height, indicated,
corresponds to a 5 000 year return time. 95% confidence intervals are shown
for repeat time to top of dam, and maximum flood level over 106 years
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proportional to the 3/2 power of the level

flow = 1.02 · 504 · (level)1.5. (8)

Figure 14a shows the fit of an eo distribution to the data, and Figure 14b
evaluates the model’s goodness of fit using the same three test statistics used
in Section 5.1. The probabilities for these are 0.88, 0.72 and 0.75, slightly
higher than for the flood levels, but still in an acceptable range, with in the
worst case 12% of randomly generated samples giving a worse fit than the
flow data.

Again the distribution is extrapolated to give the repeat time for a flood to
reach the top of the dam (240 000 years with 95% ci [1991, 8.578 · 108]), and
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Figure 13: Bootstrapped probabilities of (a) the flood level reaching the top
of the dam, and (b) probable flood level for time periods of 100, 104 and
106 years, obtained using the flood peak heights data.
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Figure 14: (a) Fit of eo distribution to the peak flood flow, and (b) goodness
of fit test.
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Figure 15: Flood flow repeat times for extended time periods. 95% confidence
intervals are shown for repeat time to top of dam, and maximum flood level
over 106 years
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the flow and thus level (170.2m with 95% ci [165.6, 175.7]) for a repeat time
of a million years (Figure 15). The wide cis associated with both estimates
highlights the lack of reliability of the estimates due to the small data set used.

Figure 16a gives the bootstrap estimated time for a flood to reach the top of
the dam, and Figure 16b gives the bootstrap distribution for maximum flood
heights for one hundred, ten thousand, and a million years.

Figures 14 to 16, calculated using the volume flow, are compared with
Figures 11 to 13, which used the level above the weir. This comparison shows
the difference underlying assumptions make. Whereas both analyses produce
estimates with wide cis due to the small data set, there are still some notable
differences. In particular, the flood level analysis produced a one in a million
year flood estimate level where the lower limit of the 95% ci was just above
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Figure 16: Bootstrapped probabilities of (a) the flood level reaching the top
of the dam, and (b) probable flood level for time periods of 100, 104 and
106 years, obtained using the flood flow data.
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the current height of the dam. The associated estimate from the flow analysis
indicates that the current dam height was well within the 95% ci of the one
in a million year estimate. However, the flow data also had a poorer fit to
the eo distribution compared with the flood level data. Hence, more weight
should be assigned to the flood level analysis instead and the inference that
the current dam height is not in compliance with the new guidelines.

6 Conclusion

An examination of the recently revised regulations for designing dams with
a large catchment area in Queensland reveals that the usual design flood
is too likely, that is having too short a return time, to comply with the
requirement to design for a one in a million year event. That is, a probable
maximum precipitation (pmp) based on storms observed over one hundred
years in Northern Queensland is not improbable enough to qualify, and further
analysis is required to calculate what rainfall or flood would correspond to
the required annual exceedance probability for the Burdekin Falls Dam (bfd).
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A number of analyses, preliminary in nature, attempted to identify a one in a
million year design rainfall event for the bfd by extrapolating beyond events
observed in the past 107 years in the Generalised Tropical Storm Zone of
northern and central Australia, and 27 years in Lake Dalrymple.

A review of the extreme storm catalogue reveals that one storm of a similar
size to the current design maximum for bfd has already occurred elsewhere in
Northern Queensland. Extrapolation of the storm catalogue identifies a one in
a million year event to be in excess of the rainfall volume of the current design
maximum. This is suggestive of a higher design requirement than currently
in place. That extrapolation suggests that rainfalls at this risk level might be
double the currently designed pmp total rainfall event, and points to the need
to try to push the very detailed pmp storm information gathered to bigger,
lower risk storms events, then running the required computer simulations of
flows in catchments and tributaries and rivers, down to the Lake, to predict
the required design spillway maximal height.

Historical extreme heights of the Lake above the spillway lip have also been
analysed and extrapolated. These suggest a compliant design height above
the spillway that is 7m above the current design height of 15m. They also
suggest that as presently designed, the dam can handle a one in fifty thousand
years flood event. A similar analysis of extreme flood flow volumes (rather
than heights) over the spillway suggest a compliant design height that is
just 1.1m above the current design height.

To predict a one in a million year event from twenty-seven years of data
giving fifteen data values is a heroic extrapolation. The problem is that
estimations of maximum flood levels are necessary to design safe dams and
to validate dam safety. The estimates are statistical, thus the results must
be a probability distribution. This distribution allows a 100 or 1000 year
flood to occur in the next year, but with a low probability. A thousand year
flood can occur any time within the thousand years, and may occur zero or
several times in the thousand years. In addition to the range given by the
probability distribution, the estimates obtained also depend on the statistical
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assumptions made and to some extent on the methods of analysis used.

Changes in the bathymetry as the lake level rises above currently observed
ranges are not included in this analysis, except an implicit assumption that
they are comparable to the changes in the current range of operation. Changes
in climate are another possibility that could alter the estimates made. The
occurrence of more extreme events is a commonly acknowledged consequence
of global warming.
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